 Nutting Manual ++

 Release 1.0 - June 18, 2003

This document, based on release 2.1 of the "Nutting Manual," is the "Nutting Manual" plus additional descriptions by members of the Astrocade Discussion Group (http://groups.yahoo.com/group/ballyalley/).

Conventions:

 1) To match the original manual as closely as possible (for table of

 contents reasons), two blanks lines separate each 'page.' This

 is followed by the page number and then one more blank line.

 2) The Page Number appears at the top of each page, not the bottom

 (don't get confused); it takes up the first line.

 3) Every instance of the word 'cassette' has been replaced by the

 word 'cartridge' to avoid any confusion with the BASIC Cassette

 Interface (which isn't mentioned in this manual at all).

 4) Special Character Representations:

 ____ ____

 a. IORQ, MREQ = IORQ#, MREQ#

 b. Subscripts = '_' (underscore) - contextual

 c. Superscripts = '^' (caret) - contextual

 d. The Greek symbol Phi ('O' over-striked with an 'I') is

 replaced with the word 'Phi'

From the original manual:

This document and its contents are the property of Dave Nutting Associates,

incorporated and Bally Manufacturing Corporation. The information contained

herein is both proprietary and confidential.

No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means electronic, mechanical, chemical,

photographical, recording, photocopying or otherwise.

Dave Nutting Associates, incorporated assumes no responsibility for the use of

any circuitry other than circuitry embodied in a Dave Nutting Associates,

incorporated designed product.

This document must be returned to Dave Nutting Associates, Incorporated by

registered mail within five days of written demand.

(c) 1978 Dave Nutting Associates, Incorporated

(c) 1978 Bally Manufacturing Corporation

This page intentionally left blank for double-sided print purposes

 TABLE OF CONTENTS - SOFTWARE

 1 Home Video Game System

 2 User Program Interface

 5 System Routine Conventions

 7 Inline Argument Mask Table Entry

 8 INTPC Begin Interpreting

 9 XINTC Exit Interpreter

 10 RCALL Call Assembly Language Subroutine

 11 MCALL Call Interpreter Subroutine

 12 MJUMP Interpreter Jump

 13 MRET Return From Interpretive Subroutines

 14 Screen Handler

 15 SETOUT Set Display Ports

 16 FILL Fill A Contiguous Area With Constant

 17 RECTAN Paint A Rectangle

 18 Write Routines

 19 Calling Sequence

 20 Representation

 21 VWRITR Write Relative From Vector

 22 WRITR Write Relative

 23 WRITP Write With Pattern Size Scare Up

 24 WRIT Write Pattern

 25 WRITA Write Absolute

 26 SAVE Save Area

 27 RESTOR Restore Area

 28 VBLANK Blank From Vector

 29 BLANK Blank Area

 30 SCROLL Scroll Window

 31 Alphanumeric Display Routines

 34 DISNUM Display BCD Number

 35 DISTIM Display Time

 36 CHRDIS Display Character

 37 STRDIS Display String

 38 Interpretation of Codes 64H to 7FH

 39 Vectoring - Vectoring Routines

 42 VECT Vector Object In Two Dimensions

 43 VECTC Vector A Co-ordinate

 44 RELABS Convert Relative Co-ordinates

 45 RELAB1 Convert Relative Address To Absolute

 46 COLSET Set Color Registers

 47 INCSCR Increment Score And Compare To End Score

 48 PAWS Pause

 49 KCTASC Key Code to ASCII

 50 SENTRY Sense Transition

 53 DOIT Respond To Input Transition

 54 PIZBRK Coffee Break, Black Out Screen, Wait For Key

 55 Example

 56 Interrupt - Music Processor

 57 MUZCPU Instruction Set

 58 Music Score Example

 59 BMUSIC Begin Playing Music

 60 EMUSIC Stop Music

 61 ACTINT Active Interrupts

 62 DECCTS Decrement Counter/Timers

 63 CTIMER

 64 STIMER Decrement Timers

 65 MOVE Move Bytes

 66 INDEXN Index Nibble

 67 STOREN Start Nibble

 68 INDEXW Index Word

 69 INDEXB Index Byte

 70 SETB Store Byte

 71 SETW Store Word

 72 Cartridge Conventions

 75 GETPAR Get Game Parameter

 76 MENU Display Menu And Branch On Selection

 77 GETNUM Get Number

 79 MSKTD Joystick Mask To Deltas

 80 RANGED Ranged Random Number

 TABLE OF CONTENTS - HARDWARE

 81 Introduction

 82 Memory Map

 85 Screen Map

 88 Color Mapping

 89 Background Color

 90 Vertical Blank

 92 Interrupt Feedback

 92 Interrupt Control Bits

 93 Screen Interrupt

 93 Light Pen Interrupt

 94 Magic Register

 95 Expand

 96 Shifter

 96 Flopper

 98 Rotator

 100 OR And XOR

 100 Intercept

 101 Player Input

 103 Master Oscillator

 104 Tones

 104 Sound Block Transfer

 106 Output Ports

 107 Input Ports

 109 Microcycler

 111 Address Chip Description

 114 Data Chip Description

 117 I/O Chip Description

 119 Music Processor

 123 Custom Chip Timing

 131 Video Timing

 135 Electrical Specifications for

 Midway Custom Circuits

 LIST OF ILLUSTRATIONS

 6 Context Block Format

 20 Pattern Representation

 32 Option Byte

 33 Alternate Font Descriptor

 40 Vector Block

 41 Vector Status Detail

 41 Checks Mask Detail

 44 Normal and Flopped Co-ordinate Systems

 51 Keypad Mask Configuration

 56 Voices Status Register

 66 INDEXN

 68 INDEXW

 74 Cartridge Map.

 78 Display Number Options

 78 Character Display Options

 83 Memory Map Low Resolution

 84 Memory Map High Resolution

 86 Screen Map Low Resolution

 87 Screen Map High Resolution

 91 Color Register Map

 97 Shifter - Flopper

 99 Rotator

 102 Player Input

 105 Audio Generator Block Diagram

 106 Output Ports

 107 Input Ports

 108 System Block Diagram

 110 Microcycler Block Diagram

 113 Address Chip Block Diagram

 116 Data Chip Block Diagram

 118 I/O Chip Block Diagram

 121 Master Oscillator

 122 Tone Generators

 124 Memory Write Without Extra Wait State

 125 Memory Write With Video Wait State

 126 Memory Read Without Extra Wait State

 127 Memory Read With Video Wait State

 128 I/O Read From Port 10H - 17H

 129 I/O Read From Other Than Port 10H - 17H

 130 I/O Write

 132 Relationship Between 7M, Horiz Dr, Vert Dr,

 Phi G, PX# and RAS

 133 Relationship Between Horiz Dr, Horiz Blank,

 Horiz Sync, and Color Burst

 134 Relationship Between Vertical Sync,

 Vertical Blank, and Vertical Drive

This page intentionally left blank for double-sided print purposes

HOME VIDEO GAME SYSTEM

This documentation describes the Bally Home Video Game System. The

description begins with a discussion of the major sub-sections of the

system. Following this, each sub-section is presented in greater

detail, with detailed particulars, such as calling sequences and

resource use.

The major sub-sections of the system are:

The User Program Interface - Allows cartridges to reference the

system routines through a standard interface. Includes an interpreter.

The Screen Handler - A complex of routines for creating screen images.

Includes facilities for initialization, pattern and character display,

co-ordinate conversion, and object vectoring.

The Interrupt Processor - Decrements timers, plays music, and

produces sounds.

The Human Interface - Reads keyboard and control handles, inputs game

selection and options.

Math Routines - A package of routines for manipulating floating

BCD numbers.

USER PROGRAM INTERFACE

The User Program Interface (UPI) is a set of procedures and conventions,

which are utilized by a cartridge program to access the facilities

provided by the home video game system. By adhering to these conventions

a cartridge program will be system independent, thus allowing improvements

to be made to later versions of the system and on board games, while

maintaining upward compatibility.

The basic rule for using the UPI is:

 With exception to the system DOPE vector, no cartridge

 should ever address system ROM directly, or expect a

 given cell to always equal a certain value.

The mechanism for calling a system routine is:

 RST 56

 DEFB (routine # + option)

where routine number is an even number specifying which sub-routine

to transfer to, symbolic identifiers, which are equated to routine

numbers, are provided by HVGLIB.

Option is used to specify how arguments are being passed to the

system routine. If option equals zero, the arguments are presumed to

exist in CPU registers; if option equals 1, the arguments are taken

to follow in line after the routine number/option byte. These arguments

are loaded into the CPU registers automatically before the

called routine is entered. The arguments required by each system

routine are given in the routine's detail documentation.

The SYSTEM macro generates the sequence previously mentioned

with option = 0:

 SYSTEM (routine #)

(example)

 SYSTEM FILL

The SYSSUK macro generates the sequence previously mentioned

with option = 1.

 SYSSUK (routine #)

Frequently it is desirable to string several system routine calls

together. If four or more calls follow in sequence, it is more

efficient to utilize the interpreter. By using the interpreter we

void the overhead of the RST 56 instruction by expecting a call index

to immediately follow the call index or arguments used in the previous

system routine.

Special call indexes are used to enter and exit interpretive mode:

Example:

 SYSTEM INTPC ;BEGIN INTERPRETING

 DO FILL ;DO FILL ROUTINE

 DEFW NORMEM ;STARTING AT TOP OF SCREEN

 DEFW 92*BYTEPL ;CONTINUING FOR 92 LINES

 DEFB 0 ;FILLED WITH ZEROES

 DO CHRDIS ;DO CHARACTER DISPLAY ROUTINE

 DEFB 0 ;Y-AXIS POSITION

 DEFB 10 ;X-AXIS POSITION

 DEFB 8 ;OPTIONS-PLOP,10-ON,00-OFF

 DEFB 'A' ;CHARACTER TO BE DISPLAYED

 EXIT ;EXIT INTERPRETER

A block of call indexes have been set aside for the internal use of

cartridge programs. If a negative call index is encountered, the

user's macro routine address table and argument table are utilized.

The user is responsible for storing the addresses of these tables

into dedicated system RAM cells.

All UPI routines are re-entrant.

Registers which are not defined as containing output parameters

will not change.

SYSTEM ROUTINE CONVENTIONS

A system routine is coded like a conventional machine language

subroutine, with the exception that output parameters are not passed

through registers, but rather through the context block.

The context block is created by the RST 56 call. The user's register

set (AF, BC, DE, HL, IX, IY) is pushed onto the stack. Register IY

is set to point at this stack frame. Thus a copy of the input

arguments exists in RAM which the system routine may refer to as needed.

These arguments are also present in the registers when the system

routine is entered; hence it is only necessary to refer to the context

block when one has clobbered an input argument.

An output argument is returned to the caller by setting it in the

context block. If a register was changed, but the associated cell in

the context block was not, then the register will have its old value

on return. Thus a system routine is free to use any of the registers

it needs without concern to saving and restoring. Moreover, the user

can assume that no registers will change except those defined as

returning an output argument.

The following illustration describes the context block and equates

provided in HVGLIB for each field.

Four tables are used by the UPI in the control transfer process. The

first two tables give the routines starting address indexed via call

number. The systems table is called SYSDPT. The user may extend this

table by storing the address of his extended table into USERTB,

USERTB+1. This address should point 128 bytes before the first entry.

The other two tables describe what in line arguments a call that

specifies in line arguments should expect. This table gives a one-byte

bitstring, also indexed via call number. The systems name is MRARGT,

the user's address is in UMARGT, UMARGT must point 64 bytes ahead.

Arguments must follow the call in a specified order.

Note that the context contains additional information not shown. This

information exists both above and below the context. User programs

should never use this information or even assume that it exists. The

user should only address this area by using IY.

 +--------------+-------------+-------------+

 | DISPLACEMENT | MEMORY CELL | EQUATE NAME |

 +--------------+-------------+-------------+

 | 0 | IY | CBIYL |

 +--------------+ | |

 | 1 | | CBIYH |

 +--------------+-------------+-------------+

 | 2 | IX | CBIXL |

 +--------------+ | |

 | 3 | | CBIXH |

 +--------------+-------------+-------------+

 | 4 | E | CBE |

 +--------------+-------------+-------------+

 | 5 | D | CBD |

 +--------------+-------------+-------------+

 | 6 | C | CBC |

 +--------------+-------------+-------------+

 | 7 | B | CBB |

 +--------------+-------------+-------------+

 | 8 | FLAGS | CBFLAG |

 +--------------+-------------+-------------+

 | 9 | A | CBA |

 +--------------+-------------+-------------+

 | A | L | CBL |

 +--------------+-------------+-------------+

 | B | H | CBH |

 +--------------+-------------+-------------+

 CONTEXT BLOCK FORMAT

IN LINE ARGUMENT MASK ENTRY

TABLES MRARGT AND UMARGT

If a bit corresponding to a register is set, the register is loaded.

The order in which the arguments must appear is:

IX (L then H), E, D, C, B, A, L, H

If an argument isn't specified, it is omitted.

 7 6 5 4 3 2 1 0

 +---+---+---+---+---+---+---+---+

 | H | L | A |IX | B | C | D | E |

 +---+---+---+---+---+---+---+---+

UPI INTPC

BEGIN INTERPRETING

Calling Sequence: SYSTEM INTPC

Arguments: NONE

Notes: NONE

Description:

See UPI description for explanation of interpreter.

UPI XINTC

EXIT INTERPETER

Calling Sequence: EXIT

Arguments: NONE

Description:

This code causes the interpreter to exit. Execution of machine

instructions proceeds at the following location.

Restrictions:

This routine should only be called using the interpreter. A direct

system call would produce unpredictable (and catastrophic) results.

UPI RCALL

CALL ASSEMBLY LANGUAGE SUBROUTINE

Calling Sequence: DO RCALL

 or

 DONT RCALL

 DEFW (routine address)

Arguments: HL = address of routine to call

Description:

RCALL may be used to call any assembly language subroutine from the

interpreter. When the subroutine returns, interpretation proceeds

at the next instruction.

When the assembly language routine receives control, HL will point

at the routine's starting address, the other registers will contain

their current values. Any changes made to the register set by the

subroutine will not be passed along. To pass an output parameter, the

subroutine must alter the context block, which is pointed to by IY.

Restrictions:

Assembler routines must not destroy IY.

Example: DEFB RCALL

 DEFW CLRAC

 .

 .

 .

 CLRAC: XOR A

 RET

UPI MCALL

CALL INTERPRETER SUBROUTINE

Calling Sequence: SYSTEM MCALL

 or

 SYSSUK MCALL

 DEFW (routine address)

Arguments: HL = Subroutine address

Description:

MCALL is used to call an interpreter sequence in a subroutine. MCALL

may be used from machine language as well as within an interpreted

sequence. Calls may be nested infinitely, limited only by stack

space (4 bytes per call).

To exit the interpreted subroutine, use MRET

Example: SYSSUK MCALL

 DEFW ZAPALL

 .

 .

 .

 ZAPALL: DO FILL+1 ;DO FILL

 DEFW NORMEM

 DEFW 0FFFH

 DEFB 0

 DO MRET ;GO BACK TO CALLER

UPI MJUMP

INTERPRETER JUMP

Calling Sequence: DO MJUMP

 or

 DONT MJUMP

 DEFW (Goto address)

Arguments: HL = Go to address

Description:

The current interpretive program counter is set to the contents of HL.

The next instruction is fetched from that address.

Restrictions:

MJUMP must be called from the interpreter. The targets of all JUMPS

must also be interpreted sequences.

Example: SYSTEM INTPC ;ENTER INTPC STEP

 .

 .

 .

 DO MJUMP ;JUMP TO END OF

 DEFW END ;INTPC STEP

 .

 .

 .

 END: DEFB XINTC ;EXIT INTERPRETER

UPI MRET

RETURN FROM INTERPRETIVE SUBROUTINES

Calling Sequence: DO MRET

Arguments: None

Description:

MRET causes execution to proceed at the instruction following the

corresponding MCALL instruction. See MCALL for more information.

SCREEN HANDLER

The screen handler is a group of routines for generating frame buffer

images. Included are entries for filling sections of the screen with

constant data, the animation of figures, and the display of alpha-

numerics.

Many of these routines utilize the MAGIC functions provided by the

custom chips. Since the status of these chips cannot be context-

switched, many of these routines are not re-entrant. The user is

responsible for preventing conflicts. This can be done by disabling

interrupt, or implementing a semaphore.

SCREEN SETOUT

SET DISPLAY PORTS

Calling sequence: SYSTEM SETOUT

 or

 SYSSUK SETOUT

 DEFB BLINE*2

 DEFB HORIZX/4

 DEFB INMOD

Arguments: A = Data to output to INMOD (port EH)

 B = Data to output to HORCB (port 9H)

 D = Data to output to VERBL (port AH)

Output: None

Description: Outputs above data to ports

 See hardware writeup for discussion of

 above ports.

SCREEN FILL

FILL A CONTIGUOUS AREA WITH CONSTANT

Calling Sequence: SYSTEM FILL

 or

 SYSSUK FILL

 DEFW (first byte)

 DEFW (number of bytes)

 DEFB (data to fill with)

Arguments: A = Data to fill with

 BC = Number of bytes to fill

 DE = Address to begin filling at

Description:

This routine sets the memory range DE to (DE+BC-1) to the

specified constant.

Notes:

Fill can be used for screen clearing, or initialization of scratchpad

RAM. It is re-entrant.

SCREEN RECTAN

PAINT A RECTANGLE

Calling Sequence: SYSTEM RECTAN

 or

 SYSSUK RECTAN

 DEFB (X co-ordinate)

 DEFB (Y co-ordinate)

 DEFB (X size)

 DEFB (Y size)

 DEFB (color mask)

Arguments: A = Color mask to write rectangle with

 B = Y-size of rectangle in pixels

 C = X-size of rectangle in pixels

 D = Y co-ordinate for UL corner of rectangle

 E = X co-ordinate for UL corner of rectangle

Description:

A rectangle of specified size of color mask is written at X,Y. RECTAN

uses the MAGIC functions and is not re-entrant.

Example: Put up a 3 X 4 rectangle of color 2 at 15,13.

 DO RECTAN

 DEFB 15

 DEFB 13

 DEFB 3

 DEFB 4

 DEFB 10101010B

SCREEN WRITE ROUTINES

Virtually every video game involves the manipulation of animated

figures. These figures are composed of patterns which are arbitrary

pixel arrays. The write routines are used to transfer such patterns

to the screen.

Five hierarchical levels of call are supported. The levels differ in

the amount of preprocessing required by the user before calling. The

highest level assumes that most of the parameters reside in a standard

data structure, while the lowest level presumes that all arguments are

in registers with all attendant transformations (such as relative-to-

absolute conversion) already accomplished. The five levels are:

 (1) Write from a Vector

 (2) Write Relative

 (3) Write Variable Pattern

 (4) Write

 (5) Write Absolute

Two transformations of the pattern may be performed prior to writing.

They are FLOP and EXPAND. FLOP is mirroring the pattern on the X-axis.

EXPAND is the translation of a 1-bit per pixel pattern into a 2-bit per

Pixel pattern. Since many patterns are only two-color, this allows for

more efficient pattern storage. FLOP and EXPAND can both be done at

the same time.

Three writing modes may be used. They are PLOP, OR, and XOR. PLOP is

a conventional store into RAM. If OR is optioned, the data being written

is ORed bit by bit with whatever was already there. Similarly, if XOR

is set, the pattern is XORed with that beneath. Use of OR or XOR takes

slightly longer since a read before write must be performed.

Note that ROTATE is not currently supported in software due to

space considerations.

STANDARD CALLING SEQUENCE

Every write routine uses a subset of the following argument/register

assignment:

 A = Magic Register

 B = Y Pattern Size

 C = X Pattern Size in Bytes

 D = Y Co-ordinate (0 - 101)

 E = X Co-ordinate (0 - 159)

 HL = Pattern Address

 IX = Vector Address

PATTERN REPRESENTATION

The higher the level of the write routine, the more ancillary infor-

mation is stored with the pattern. The following diagram shows what

each level expects. Any bytes of lower address than the pointer for

a given level, need not be specified.

Use Restrictions:

None of the write routines are re-entrant due to Magic Register/Expander

clobber.

 +----------------+

 VWRITR,WRITR --> | X DISPLACEMENT | 0

 +----------------+

 | Y DISPLACEMENT | 1

 +----------------+

 WRITP --> | X SIZE | 2

 +----------------+

 | Y SIZE | 3

 WRIT,WRITA --> +----------------+

 | | 4

 +----------------+

 | |

 . .

 . .

 | |

 +----------------+

 | | N+4

 +----------------+

SCREEN WRITE VWRITR

WRITE RELATIVE FROM VECTOR

Calling Sequence: SYSTEM VWRITR

 or

 SYSSUK VWRITR

 DEFW (vector)

 DEFW (pattern)

Arguments: HL = Pattern address

 IX = Vector Address

Output: DE = Absolute address used

 A = Magic register used

Description:

The co-ordinates and magic register are loaded from the specified

vector. (See vector routine document) The relative co-ordinates

stored with the pattern are added to the co-ordinates from the vector.

The pattern size is also taken from the pattern and writing proceeds.

Notes:

If expansion is to be done, the ON/OFF color must be set by the user

before calling VWRITR.

SCREEN WRITE WRITR

WRITE RELATIVE

Calling Sequence: SYSTEM WRITR

 or

 SYSSUK WRITR

 DEFB (X co-ordinate)

 DEFB (Y co-ordinate)

 DEFB (Magic Register)

 DEFW (Pattern address)

Arguments: HL = Pattern address

 A = Magic Register

 D = Y co-ordinate

 E = X co-ordinate

Output: DE = Screen Address Used

 A = Magic Register Used

Description:

The relative co-ordinates stored with the pattern are added to the

co-ordinates passed in DE. Pattern size is taken from the pattern.

Notes:

If expansion is to be done, the ON/OFF color must be set by the user

before calling WRITR.

SCREEN WRITE WRITP

WRITE WITH PATTERN SIZE SCARE UP

Calling Sequence: SYSTEM WRITP

 or

 SYSSUK WRITP

 DEFB (X co-ordinate)

 DEFB (Y co-ordinate)

 DEFB (Magic Register)

 DEFW (Pattern address)

Arguments: HL = Pattern Address

 A = Magic Register

 D = Y co-ordinate

 E = X co-ordinate

Output: DE = Screen Address Used

 A = Magic Register Used

Description:

The pattern size is taken from the pattern.

Notes:

User must worry about ON/OFF color if expansion is used.

SCREEN WRITE WRIT

WRITE PATTERN

Calling Sequence: SYSTEM WRIT

 or

 SYSSUK WRIT

 DEFB (X co-ordinate)

 DEFB (Y co-ordinate)

 DEFB (X pattern size)

 DEFB (Y pattern size)

 DEFB (Magic Register)

 DEFW (Pattern address)

Arguments: HL = Pattern Address

 A = Magic Register to use

 B = Y pattern size

 C = X pattern size

 D = Y co-ordinate

 E = X co-ordinate

Output: DE = Absolute address used

 A = Magic Register used

Notes:

User must set ON/OFF color if using expansion.

SCREEN WRITE WRITA

WRITE ABSOLUTE

Calling Sequence: SYSTEM WRITA

 or

 SYSSUK WRITA

 DEFW (Absolute address)

 DEFB (X pattern size)

 DEFB (Y pattern size)

 DEFB (Magic Register)

 DEFW (Pattern address)

Arguments: HL = Pattern Address

 A = Magic Register

 B = Y Pattern size

 C = X Pattern size

 DE = Absolute screen address of upper left-

 hand corner of where to write

Notes:

This entry can be used for pattern writing to non-magic memory.

The value in A is not output to (MAGIC); it is only interrogated

to decide whether to FLOP or EXPAND.

SCREEN SAVE

SAVE AREA

Calling Sequence: SYSTEM SAVE

 OR

 SYSSUK SAVE

 DEFW (save area)

 DEFB (X size)

 DEFB (Y size)

 DEFW (Screen address)

Arguments: B = Y size of area to save

 C = X size of area to save (in bytes)

 DE = Address of save area

 HL = Absolute address of upper left-hand corner

 of area to save

Description:

SAVE is used to preserve what is 'underneath' a moving pattern. SAVE

copies the indicated area of the screen to the save area. The sizes of

the area which were saved is preserved in the first two bytes of the

save area.

The save area size must be greater than or equal to the X-size times the

Y-size plus 2.

The save area may be MAGIC or non-MAGIC.

SCREEN RESTORE

RESTORE AREA

Calling Sequence: SYSTEM RESTOR

 or

 SYSSUK RESTOR

 DEFW (Save area)

 DEFW (Screen address)

Arguments: DE = Save area to restore from

 HL = Absolute address of upper left-hand corner

 of area to restore

Description:

RESTORE is the inverse of SAVE. The size of the area to restore is

taken from the first two bytes of the save area.

SCREEN VBLANK

BLANK FROM VECTOR

Calling Sequence: SYSTEM VBLANK

 or

 SYSSUK VBLANK

 DEFW (Vector address)

 DEFB (X size)

 DEFB (Y size)

Arguments: D = Y size

 E = X size (in bytes)

 IX = Vector address

Description:

The BLANK bit in the vector status byte is tested. If it is not set,

no blanking is done. If it is set, it is reset, then the old screen

address is taken from the vector and blanking is done. If FLOPPED is

specified by the Magic Register byte in the vector, a flopped blank is

done. VBLANK always blanks to zero.

SCREEN BLANK

BLANK AREA

Calling Sequence: SYSTEM BLANK

 or

 SYSSUK BLANK

 DEFB (X size)

 DEFB (Y size)

 DEFB (Blank to)

 DEFW (Blank address)

Arguments: HL = Blank address (not MAGIC)

 B = Data to blank to

 D = Y size

 E = X size

Description:

The specified area is blanked to whatever is passed in B.

SCREEN SCROLL

SCROLL WINDOW

Calling Sequence: SYSTEM SCROLL

 or

 SYSSUK SCROLL

 DEFW (line increment)

 DEFB (# of bytes)

 DEFB (# of lines)

 DEFW (first byte)

Arguments: B = Number of lines to scroll

 C = Number of bytes on line to scroll

 DE = Line increment

 HL = First byte to scroll

Description:

This routine copies NBYTES from first line +INC to first line.

Thus to scroll upward, HL points at the first line (which is over-

written) and the line increment would be positive. To scroll downward

HL points at the last line and the line increment would be negative.

The value in HL is an absolute address calculated by:

BASE OF SCREEN + #BYTES IN X OFFSET +(#lines offset*byte per line)

Note:

This routine can only be used to scroll one line at a time.

SCREEN ALPHANUMERIC

ALPHANUMERIC DISPLAY ROUTINES

HVGSYS provides several routines for the display of alphanumeric

information. This section provides information which is common

to all of the alphanumeric display routines.

The ASCII character code is used to represent all strings with

the following extensions:

 Characters with hex equivalents in the range 1 - 1F are

 interpreted as tabulation codes which cause the character

 display routines to skip over N character positions before

 writing the following characters.

 The characters 20H to 63H are displayed as 5 X 7 standard

 graphics with 3 pixels of horizontal spacing and 1 pixel

 of vertical spacing.

 The characters between 64H and 7FH are interpreted by STRDIS

 as control codes which cause the contents of registers C, DE,

 and IX to be changed to the value that follow the string.

 See table accompanying STRDIS.

 The characters between 80H and FFH are taken as references to

 a user supplied alternate character font.

The following argument/register combinations are used by all of the

alphanumeric display routines.

Register C contains the options byte formatted as shown below.

ENLARGE FACTOR specifies if the character is to be enlarged in size.

The table below defines the possible values for this parameter.

XOR/OR WRITE - All writes are performed through magic memory. Use

of one of these options causes the character to be ORed/XORed with

what was beneath it.

ON/OFF COLOR - All characters are stored one bit per pixel, but are

written two bits per pixel by use of the expander. This field specifies

the pixel values to translate the one bit per pixel representation into.

For example, the value 1101 specifies that the foreground color is 11,

and the background color is 01.

 OPTION BYTE

 +------+------+------+------+------+------+------+------+

 | ENLARGE | XOR | OR | ON | OFF |

 | FACTOR |WRITE | WRITE| COLOR | COLOR |

 +------+------+------+------+------+------+------+------+

 ENLARGE HOW MANY ENLARGED SIZE

 FACTOR TIMES LARGER OF SINGLE PIXEL

 00 1 1 X 1

 01 2 2 X 2

 10 4 4 X 4

 11 8 8 X 8

D Register contains the Y co-ordinate and the E register contains

The X co-ordinate. These co-ordinates give the address of the upper

left-hand corner where the first character will appear. Upon return,

these registers are updated to give the address of the character to

the right, (or below if no more space exists on the line). This

simplifies the composition of complex messages.

IX register contains the Alternate Font Descriptor. It is required

only if alternate font is reference in call. Each character must be

stored in one-bit per pixel format.

The small (3 X 5) character set is displayed using this facility. A

word in the system DOPE vector points at a standard alternate font

descriptor for this character set.

The format of the alternate font descriptor is shown below.

 +-----------------+

 IX -> 0 | BASE CHARACTER | EQUAL TO FIRST CHARACTER IN TABLE

 +-----------------+

 1 | X FRAME SIZE | CHARACTER SIZE IN BITS + X SPACING

 +-----------------+

 2 | Y FRAME SIZE | CHARACTER SIZE IN BITS + Y SPACING

 +-----------------+

 3 | X PATTERN SIZE |

 +-----------------+ EACH CHARACTER TABLE ENTRY SHOULD BE OF

 4 | Y PATTERN SIZE | SIZE X PATTERN*Y PATTERN SIZE

 +-----------------+

 5 | CHARACTER TABLE |

 | ADDRESS |

 6 | |

 +-----------------+

SCREEN ALPHANUMERIC DISNUM

DISPLAY BCD NUMBER

Calling Sequence: SYSTEM DISNUM

 or

 SYSSUK DISNUM

 DEFB (X)

 DEFB (Y)

 DEFB (options)

 DEFB (extended options)

 DEFW (number address)

Arguments: B = Extended options

 C = Standard alphanumeric options byte

 DE = Standard X,Y co-ordinate

 HL = Address of BCD number

*NOT LOADED IX = Optional character font descriptor

Outputs: DE = Updated

Description:

This routine displays the standard BCD codes 0 through 9. In addition,

the codes AH through FH are also defined. The interpretation for

these codes are: A = * B = + C = '

 D = - E = . F = /

If leading zero suppress is set, then instead of displaying a leading

zero, a space is displayed. The first non-zero nibble encountered

terminates leading zero suppression (including A - F). If the number

is zero, a single zero is displayed.

If alternate font is set, the routine will display using codes between

AAH and B9H (zero starting at B0H).

Additions (by Lance Squire):

After "If leading zero suppress is set,..."

Register B contains the extended options byte formatted as shown below.

+----------+------+--+--+--+--+--+--+
| Zero | Alt | Number of Digits|
| Suppress | Font | to display |
+----------+------+--+--+--+--+--+--+

Its not properly stated, but this is the score display routine. Use INCSCR to increment the memory location pointed to.

Its also the number + function display for the calculator, but there is less call for that and none of the BCD math functions are referenced.
SCREEN ALPHANUMERIC DISTIM

DISPLAY TIME

Calling Sequence: SYSTEM DISTIM

 or

 SYSSUK DISNUM

 DEFB (X co-ordinate)

 DEFB (Y co-ordinate)

 DEFB (options)

Arguments: DE = X,Y co-ordinates

 X = Options (see note below)

 IX = Alternate Font Descriptor (not loaded)

Outputs: DE = Updated

Description:

This routine displays the system time (GTMINS, GTSECS) at the co-

ordinates specified in the form MM:SS, where M=minutes, S=seconds.

Seconds are optional.

Notes:

The small character set is used and one level of enlarge factor

is permitted.

Options are the same as the alphanumeric display routine except

that bit 7=1 to display colon and seconds; bit 7=0 to suppress colon and

seconds.

SCREEN ALPHANUMERIC CHRDIS

DISPLAY CHARACTER

Calling Sequence: SYSTEM CHRDIS

 or

 SYSSUK CHRDIS

 DEFB (X co-ordinate)

 DEFB (Y co-ordinate)

 DEFB (options)

 DEFB (Character)

Arguments: A = ASCII character to display

 C = Standard options byte

 DE = Standard Y,X co-ordinates to begin at

*NOT LOADED IX = Optional Alternate Font descriptor address

Outputs: DE = Updated to next frame

Description:

This is the basic character display primitive. If tabulation is

specified, the co-ordinates are updated but no actual writing occurs.

Notes:

Observe that IX is not loaded by the UPI SUCK facility. If alternate

font is used, IX must be loaded with alternate descriptor address.

Since this routine uses magic memory, it is not re-entrant.

SCREEN ALPHANUMERIC STRDIS

DISPLAY STRING

Calling Sequence: SYSTEM STRDIS

 or

 SYSSUK STRDIS

 DEFB (X co-ordinate)

 DEFB (Y co-ordinate)

 DEFB (options)

 DEFW (String)

Arguments: HL = String address

 C = Standard options byte

 DE = Standard Co-ordinates

*NOT LOADED IX = Alternate Font descriptor dddress

Outputs: DE = Updated to next frame

Description:

The string pointed at by HL is displayed as optioned. The string is

terminated by a zero byte.

Notes:

IX is not loaded by SUCK. STRDIS is not re-entrant.

STRDIS INTERPRETATION OF CODES 64H to 7FH

STRDIS responds to the character codes between 64H and 7FH, these codes

are taken to specify that certain registers in the context block are

to be set to new values. This facility is useful for changing size,

write mode, screen co-ordinates, or fonts, during a single STRDIS call.

The following table specifies which registers are loaded for a given

code. The order in which the new register data follows the code is

also represented.

 64H C 72H IX,D

 65H E,C 73H IX,E,D

 66H D,C 74H IX,C

 67H E,D,C, 75H IX,E,C

 68H NONE 76H IX,D,C

 69H E 77H IX,E,D,C

 6AH D 78H IX

 6BH E,D 79H IX,E

 6CH C 7AH IX,D

 6DH E,C 7BH IX,E,D

 6EH D,C 7CH IX,C

 6FH E,D,C 7DH IX,E,C

 70H IX 7EH IX,D,C

 71H IX,E 7FH IX,E,D,C

SCREEN VECTORING - VECTORING ROUTINES

Most games involve moving patterns. Most moving patterns move along

a line. The home video game operating system provides the vectoring

routines to facilitate programming such pattern motion.

The vectoring routines work with a memory array called a vector.

Represented within this vector are the co-ordinates of an object, the

velocities of the object, and the necessary status information to

control the object. By periodically invoking the vectoring routine, this

data is updated and can be used to direct the motion of a pattern.

More formally, a vectored object possesses an X and Y co-ordinate.

Associated with these co-ordinates are velocities DELTA X and DELTA Y,

which are added to X and Y every time increment. Since the screen is

finite, there also exists two upper and lower limits X_LU, X_LL, Y_LU,

and Y_LL, the attainment of which requires some response.

The HVGSYS vectoring routine allows for two different responses to a

limit attained. Either the sign of the delta is reversed or vectoring

is stopped for this co-ordinate. This is specified by a flag byte.

When attainment occurs, this fact is indicated by a status byte. Also,

the co-ordinate is set equal to the limit that was attained, preventing

over-shoot.

Utilization of the vectoring routines involves a number of user

responsibilities. The user must properly initialize certain fields in the

vector array. He must increment the time base byte, and periodically

call the vectoring routine. Status bits must be checked and writing must

be done.

To insure high-accuracy, co-ordinates and deltas are double- precision.

The assumed binary "decimal point" is between the high and low order byte.

The following diagrams explain the layout of the vector array and the

attendant user responsibilities.

 VECTOR BLOCK

 BYTE FUNCTION HVGLIB

 NAME

 +-------------------+--------+

 0 | MAGIC REGISTER | VBMR | - DO NOT USE BIT 7

 +-------------------+--------+

 1 | VECTOR STATUS | VBSTAT |

 +-------------------+--------+

 2 | TIME BASE | VBTIMB | - INCREMENTED BY USER

 +-------------------+--------+

 3 | | VBDXL |

 | DELTA X +--------+

 4 | | VBDXH |

 +-------------------+--------+

 5 | | VBXL |

 | X +--------+

 6 | | VBXH |

 +-------------------+--------+

 7 | X CHECKS MASK | VBXCHK |

 +-------------------+--------+

 8 | | VBDYL |

 | DELTA Y +--------+

 9 | | VBDYH |

 +-------------------+--------+

 10 | | VBYL |

 | Y +--------+

 11 | | VBYH |

 +-------------------+--------+

 12 | Y CHECKS MASK | VBYCHK |

 +-------------------+--------+

 13 | OLD | VBOAL | - MAINTAINED BY USER

 | SCREEN +--------+

 14 | ADDRESS | VBOAH |

 +-------------------+--------+

 VECTOR STATUS DETAIL

 +--------+--------+--------+--------+--------+--------+--------+--------+

 | Active | BLANK | NOT |

 | VBSACT | VBBLNK | USED |

 +--------+--------+--------+--------+--------+--------+--------+--------+

ACTIVE Set by user to indicate that vector is active. The

 vectoring routines will do no processing if reset.

BLANK Must be initialized by user to reset state. Thereafter

 this bit is maintained by the VWRIT and VBLANK

 system routines.

 CHECKS MASK DETAIL

 +--------+--------+--------+--------+--------+--------+--------+--------+

 | NOT | LIMIT | NOT |REVERSE | LIMIT |

 | |ATTAINED| | DELTA | CHECK |

 | USED | | USED | SIGN | |

 | | VBCLAT | | VBCREV | VBCLMT |

 +--------+--------+--------+--------+--------+--------+--------+--------+

LIMIT CHECK Set by user to indicate that this co-ordinate is

 to be limit checked.

REVERSE DELTA Set by user to indicate that when this co-ordinate

 attains it's limit, the sign of the associated delta

 is to be reversed. This can be used to cause objects

 to 'bounce' off barriers.

LIMIT ATTAINED Set by system if the limit was attained this call.

 Otherwise it is reset. If the delta was not changed,

 either by Reverse Delta or user, this bit will stay set.

SCREEN VECTORING VECT

VECTOR OBJECT IN TWO DIMENSIONS

Calling Sequence: SYSTEM VECT

 or

 SYSSUK VECT

 DEFW (Vector address)

 DEFW (Limit table)

Arguments: HL = Limit table address

 IX = Vector address (points at VBMR)

Output: C = Time base used

 Z = True, if it did not move

Description:

If the vector is inactive, control is returned immediately. Otherwise

VECTC is called for X, then Y. The zero status is determined by

comparing the new co-ordinate value with it's old value. If the

high-order byte changed, then the object moved. Zero status set if

object did not move, reset if object moved.

SCREEN VECTORING VECTC

VECTOR A CO-ORDINATE

Calling Sequence: SYSTEM VECTC

 or

 SYSSUK VECTC

 DEFW (co-ordinate address)

 DEFW (Limit table)

Arguments: IX = Pointer to low-order byte of delta for co-ordinate

 HL = Limits table for THIS CO-ORDINATE (if required)

 C = Time base to use

Description:

This routine operates on the subset of the vector array associated with

a single co-ordinate. This subset consists of the delta co-ordinate

and checks mask. This entry is provided so special vectoring schemes

may be implemented such as 1 dimensional or 3 dimensional vectoring.

This entry adds the delta to the co-ordinate time base times. It then

performs the limit checks for the co-ordinate if optioned.

Note that this entry DOES NOT interrogate or alter any bytes in the

vector array outside of the defined subset. Hence the active bit

isn't checked.

SCREEN RELABS

CONVERT RELATIVE CO-ORDINATES TO ABSOLUTE MAGIC ADDRESS AND

SET UP MAGIC REGISTER

Calling Sequence: SYSTEM RELABS

 or

 SYSSUK RELABS

 DEFB (Magic register value)

Arguments: A = Magic register value to set

 D = Y co-ordinate

 E = X co-ordinate

Output: A = Magic register value, with proper shift amount set

 DE = Absolute memory address (MAGIC)

Description:

The low-order two bits of the X co-ordinate are inserted into the magic

register value bitstring. The absolute memory address corresponding to

the co-ordinate is computed, taking into consideration the value of the

flopped bit. The co-ordinate systems used are shown below.

 0 ---> 159 159 <--- 0

 0 +----------------------------+ +----------------------------+

 | | | | 0

 | | | |

 | | | |

 | | NORMAL | | FLOPPED | |

 | | CO-ORDINATE | | CO-ORDINATE | |

 V | SYSTEM | | SYSTEM | V

 | (FLOPPED BIT RESET) | | (FLOPPED BIT SET) |

 | | | |

101 | | | | 101

 +----------------------------+ +----------------------------+

Proofing Note: 160/102 = 1.57 - Actual Screen Aspect Ratio

SCREEN RELAB1

CONVERT RELATIVE ADDRESS TO ABSOLUTE NORMAL ADDRESS

Calling Sequence: SYSTEM RELAB1

 or

 SYSSUK RELAB1

 DEFB (Magic register value)

Arguments: A = Magic register value to combine with shift amount

 D = Y co-ordinate

 E = X co-ordinate

Output: A = Combined magic register value

 DE = Absolute normal address (not magic)

Description:

This routine is identical to RELABS except that a non-magic address

is returned and the hardware magic register is not set. The flopped

bit is interrogated and the flopped co-ordinate system is used,

if optioned.

SCREEN COLSET

SET COLOR REGISTERS

Calling Sequence: SYSTEM COLSET

 or

 SYSSUK COLSET

 DEFW (Address of color list)

Inputs: HL = Color list laid out

 COL3L = first to

 COLOR last i.e.: COLOR would be at a higher

 address than COL3L

Description:

This routine sets color registers and saves address of colors for

use by PIZBRK and BLAKOUT for color restoration.

[Proofing Note: BLAKOUT is seven letters (limit is six). I can not find

 anything close to this in the manual. Thoughts? Dec 16, 2001]

HUMAN INCSCR

INCREMENT SCORE AND COMPARE TO END SCORE

Calling Sequence: SYSTEM INCSCR

 or

 SYSSUK INCSCR

 DEFW (address of score)

Arguments: HL = Address of score (must be 3 bytes long)

Output: Score incremented and optionally game over bit set

Description:

The 3 byte score pointed at by HL (BCD with low order byte at lowest

address) is incremented (by 1) and compared to the end score (ENDSCR).

If the end score bit (GSBSCR) was set in the game status byte (GAMSTB)

and end score has been reached, then the game over bit (GSBEND) is set

in the game status byte.

HUMAN PAWS

PAUSE

Calling Sequence: SYSTEM PAWS

 or

 SYSSUK PAWS

 DEFB (number of interrupts)

Arguments: B = Number of interrupts to wait

Description:

This routine provides for a pause for a certain number of interrupts.

If used with ACT INT, 60 will be a 1-second pause. This routine

does an EI upon entry and assumes interrupts will occur.

HUMAN KEYBOARD KCTASC

KEY CODE TO ASCII

Calling Sequence: SYSTEM KCTASC

Arguments: B = Key code (Not loaded)

Output: A = ASCII equivalent of keycode

Description: This routine does a table look-up

KEYCODE NAME GRAPHIC HEX VALUE

------- ---- ------- ---------

1 Clear C 43

2 Up Arrow * 5E

3 Down Arrow * 5C

4 Percent % 25

5 Recall MR 52

6 Store MS 53

7 Change Sign CH 3B

8 Divide * 2F

9 7 7 37

10 8 8 38

11 9 9 39

12 Times X 2A

13 4 4 34

14 5 5 35

15 6 6 36

16 Minus - 2D

17 1 1 31

18 2 2 32

19 3 3 33

20 Plus + 2B

21 Clear Entry CE 26

22 0 0 30

23 Decimal Point . 2E

24 Equals = 3D

* - Three names ('Up Arrow,' 'Down Arrow,' and 'Divide') do not have ASCII equivalent graphic marks. An asterisk is NOT printed on screen. Instead, the BPA uses three different non-ASCII symbols. Each graphic looks as the name describes.

HUMAN CONTROLS & KEYPAD SENTRY

SENSE TRANSITION

Calling Sequence: SYSTEM SENTRY

 or

 SYSSUK SENTRY

 DEFW (Key mask address)

Arguments: DE = Keypad mask table

Description:

SENTRY checks for changes in the potentiometers (pots), control

handles, triggers, keypad, semaphores and counter/timers. It also

takes care of blackout. Blackout is the automatic blacking-out of

the screen after 255 seconds without a change. If SENTRY isn't called

then the game will not black out.

SENTRY checks if TIMOUT equals 0 on entry and if zero, it goes to

PIZBRK. If a key has gone down or a control handle changed, then TIMOUT

is set to FFH.

HL should point at a keypad mask. The keypad consists of 6 rows

by 4 columns.

Example mask of DEFB 011100B

just 0-9 DEFB 111100B

 DEFB 011100B

 DEFB 000000B

See diagram on following page.

 +-------------+------------+------------+------------+

| 1 | 2 | 3 | 4 |

| C | Up | Down | % | 0

| | Arrow | Arrow | |

+-------------+------------+------------+------------+

| 5 | 6 | 7 | 8 |

| MR | MS | CH | Division | 1

| | | | Symbol |

+-------------+------------+------------+------------+

| 9 | 10 | 11 | 12 |

| 7 | 8 | 9 | X | 2

| | | | | MASK

+-------------+------------+------------+------------+ BIT

| 13 | 14 | 15 | 16 | NUMBER

| 4 | 5 | 6 | - | 3

| | | | |

+-------------+------------+------------+------------+

| 17 | 18 | 19 | 20 |

| 1 | 2 | 3 | + | 4

| | | | |

+-------------+------------+------------+------------+

| 21 | 22 | 23 | 24 |

| CE | 0 | . | = | 5

| | | | |

+-------------+------------+------------+------------+

 1 2 3 4

 MASK BYTE NUMBER

 +-------------+

 KEY NUMBER ----- * |

 | * ---------- FUNCTION

 | |

 +-------------+

Output: A = Return Code

 B = Extended Code

PRIORITY A= MEANING

-------- -- -------

 SNUL Nothing Changed

1 SCT0 Counter/Timer 0 decremented by 0

 to

1 SCT7 Counter/Timer 7 decremented to 0

2 SF0 SEMI4S bit 0 was 1

 to

2 SF7 SEMI4S bit 7 was 1

4 SSEC 1 second has elapsed since the last SSEC

5 SKYU Keypad went from down to up B=0

5 SKYD Key is down B=key number

3 SP0 POT 0 changed B=new value

 to

3 SP3 Pot 3 changed B=new value

6 SJ0 Joystick 0 changed B=new value

 to

6 SJ3 Joystick 3 changed B=new value

6 ST0 Trigger 0 changed B=new value

 to

6 ST3 Trigger 3 changed B = new value

Notes:

The potentiometers (pots) are debounced. New trigger value=Trigger

off (0) or trigger on (10H). When switches are actuated simultaneously

the order of return is: SCT7 TO SCT0, SF7 TO SF0, SP0 TO SP3, SSEC,

SKYU, SKYD, SJ0, ST0, SJ1, ST1, SJ2, ST2, SJ3, ST3.

HUMAN CONTROL DOIT

RESPOND TO INPUT TRANSITION

Calling Sequence: SYSTEM DOIT

 or

 SYSSUK DOIT

 DEFW (Do table)

Arguments: A = SENTRY return code

 B = Extended return code

 HL = Do table address

Description:

The SENTRY return code is used to search the DOTABLE. If the

transition is present in DOTABLE, then control is transferred to the

associated handling routine. The handling routine may be MACRO or

machine instructions. The routine receives registers as they are on

DOIT entry. If no transition is found, execution continues at the

first instruction following call. The DOTABLE is a linear list

composed of 3 byte entries, 1 entry per SENTRY return code.

 +--------+--------+--------+--------+--------+--------+--------+--------+

 | TRANSFER | RETURN |

 | TYPE | CODE |

 +--------+--------+--------+--------+--------+--------+--------+--------+

 | |

 | HANDLER ADDRESS |

 | |

 +---+

Where transfer type designates how handler address is to be transferred

to. The codes are: 00=JMP to machine language routine and pop

context; 01=RCALL machine language routine in current context; 10=MCALL

interpreter routine in current context. Mode 01 and 10 expect the

returned-to point to be interpretive, mode 0 expects it to be machine instructions.

End of list is indicated by a terminator byte which is greater than or

equal to C0H.

HUMAN CONTROL PIZBRK

"COFFEE BREAK" BLACK OUT SCREEN AND WAIT FOR KEY

Calling Sequence: SYSTEM PIZBRK

 or

 SYSSUK PIZBRK

Input: None

Output: None

Description:

This routine blacks out the screen and waits for either a key press

or a trigger or a joystick change.

This function should be called whenever a "hold until further notice"

is needed.

All keys on the keypad are enabled. Interrupts are disabled on

entry and enabled on exit. It is a good idea to reset any 60th of a

second timers on exiting PIZBRK.

HUMAN CONTROLS EXAMPLE

This routine echoes number keys and takes a coffee break on trigger

0 being pulled. Assumes SP is set and screen erases.

 SYSTEM INTPC

 LOOP: DO SENTRY

 DEFW NUMBAS

 DO DOIT

 DEFW DTAB

 DO MJUMP

 DEFW LOOP

 NUMBAS: DEFB 011100B ;NUMBER KEYS ONLY

 DEFB 111100B

 DEFB 011100B

 DEFB 0

 DTAB: MC SKYD,SHOW ;IN KEY DOWN MACRO CALL

 MC ST0,PBREAK+END ;ON TO MACRO CALL

 SHOW: DO KCTASC ;CONVERT TO ASCII

 DO SUCK

 DEFB 00000111B ;X,Y=0=DE

 DEFB 11001100B ;OPTIONS=C

 DONT CHRDIS ;DISPLAY CHAR

 MRET ;BACK TO LOOP

 PBREAK: DO PIZBRK ;COFFEE BREAK

 DO MRET ;BACK TO LOOP

INTERRUPT MUSIC PROCESSOR

The music processor can be thought of as an independent CPU handling

all output to the music/noise ports. The MUZCPU has 4 registers:

 MPC: Like all program counters, points to the next

 data byte to fetch.

 MSP: Like a stack pointer, points to return

 address in the stack.

 Duration: Is loaded at the start of a note and then

 decremented every 60th of a second

 Voice: Is a status register. It tells which voices

 (tones) to load with what data.

The voices status register is shown below. Execution proceeds

right-to-left. Make sure that you always have at least one PC

incrementing bit or load on.

 +--------+--------+--------+--------+--------+--------+--------+--------+

 | INC | OUT | INC | OUT | INC | OUT | OUT | OUT |

 | PC | TONE A | PC | TONE B | PC | TONE C | VIBRA | VOLN |

 +--------+--------+--------+--------+--------+--------+--------+--------+

MUZCPU INSTRUCTION SET

OF BYTES MNEMONIC COMMENT

---------- -------- -------

 2 VOICES,(data) ;VOICES=(data)

 2 MASTER,(data) ;TONE0=(data)

 3 CALL,(address) ;(SP)=(PC+3) PC=address

 1 RET ;PC=(SP++)

 3 JP,(address) ;PC=address

 2 NOTE1 ;Duration, note or data (D1)

 3 NOTE2 ;Duration, D1,D2

 4 NOTE3 ;Duration, D1,D2,D3

 5 NOTE4 ;Duration, D1,D2,D3,D4

 6 NOTE5 ;Duration, D1,D2,D3,D4,D5

 2 REST ;Duration in 60ths of a second

 ;Pauses silently (except legato)

 1 QUIET ;Stops music and sets volume=0

 2 OUTPUT ;Port #, Data

 9 OUTPUT ;SNDBX,DATA10,D11,D12,D13,D14,D15,D16,D17

 3 VOLUME ;(VOLAB),(VOLMC) sets volume for notes

 1 PUSHN ;Push # between 1-16 onto the stack

 1 CREL ;Call relative to next instruction

 3 DSJNZ ;decrement stack top and jump

 ;if not 0, else pop stack

 1 LEGSTA ;flips between STACATO and LEGATO modes

 ;STACATO is clipped 1/60th before the

 ;end of each note

 ;LEGATO allows one note to run into

 ;the next

Note: All durations are limited to a maximum of 127

MUSIC SCORE EXAMPLE

 VOICES 11010100B ;ABC=DATA 1

 MASTER 0A1H ;ABC=1/2

 VOLUME 88H,08H

 NOTE1 12,A1

 NOTE1 12,C2

 NOTE1 24,E2

 NOTE1 12,C2

 NOTE1 12,E2

 REST 6

 VOICES 11110110B ;Suck in Vibrato, AB and C bytes

 NOTE3 12,14,A2,E2

 QUIET

INTERRUPTS MUSIC BMUSIC

BEGIN PLAYING MUSIC

Calling Sequence: SYSTEM BMUSIC

 or

 SYSSUK BMUSIC

 DEFW (Music stack)

 DEFB (voices byte)

 DEFW (Score)

Arguments: A = Voices to start with

 HL = MUSIC PC (Score)

 IX = Music SP

Description:

Quiets any previous music, then interprets "score". See music

processor for more information.

INTERRUPTS MUSIC EMUSIC

STOP MUSIC

Calling Sequence: SYSTEM EMUSIC

 or

 SYSSUK EMUSIC

Arguments: NONE

Outputs: NONE

Description:

Outputs 0 to volume ports and halts music processor.

INTERRUPTS ACTINT

ACTIVE INTERUPTS

Calling Sequence: SYSTEM ACTINT

 or

 SYSSUK ACTINT

Input: NONE

Output: NONE

Function: Sets IM=2, INLIN=200, sets I reg + INFBK

 Calls TIMEX and TIMEY

 Enables interrupts

Description:

Once ACTINT is called, it provides interrupt service completely

automatically. It runs the seconds timer, the game timer, the music

processor, and black-out timers, plus CT0, CT1, CT2, CT3. Functions

as 60th of a second timers.

INTERRUPTS TIMERS DECCTS

DECREMENT COUNTER/TIMERS

Calling Sequence: SYSTEM DECCTS

 or

 SYSSUK DECCTS

 DEFB (Mask)

Input: C = Mask indicative which counters to decrement.

Output: Sentry will notify the program.

Description:

Decrements counter if they are non-zero. If any go from 1 to 0,

sentry is notified.

INTERRUPTS TIMERS CTIMER

Calling Sequence: CALL CTIMER

Input: HL = Address of custom time base

 B = Value to load into time base 1 to 0 transition

 C = CT mask as in DECCTS

Description:

HL is loaded and decremented. If it is not = 0, then a return is

executed. Else, HL is loaded with B and DECCTS is called.

Registers HL, DE, BC, and AF are undefined upon exit.

INTERRUPTS TIMERS STIMER

DECREMENT TIMERS

Calling Sequence: PUSH AF

 PUSH BC

 PUSH DE

 PUSH HL

 CALL STIMER

 POP HL

 POP DE

 POP BC

 POP AF

Input: NONE

Description: STIMER keeps track of game time. If it hits 0,

 then the GSBEND bit in the game status byte is set.

Uses: AF, BC, DE, HL

Calls: Music processor on note (duration) expiration.

Note: Sets bit 7 of key sex to 1 on every second.

MOVE MOVE BYTES

Calling Sequence: SYSTEM MOVE

 or

 SYSSUK MOVE

 DEFW (Destination)

 DEFW (Number of bytes)

 DEFW (Source)

Arguments: DE = Destination address

 HL = Source address

 BC = Number of bytes to transfer

Description: MOVE uses LDIR to copy bytes from source

 to destination.

INDEXN INDEX NIBBLE

Calling Sequence: SYSTEM INDEXN

 or

 SYSSUK INDEXN

 DEFW (Base Address)

Arguments: C = Nibble displacement (0 - 255)

 HL = Base address of table

Output: A = Nibble value

Description:

INDEXN is used to look up a given nibble in a liner list.

The indexing works like:

 +-------+-------+

 BASE ADDRESS | 1 | 0 |

 +-------+-------+

 1 | 3 | 2 |

 +-------+-------+

 2 | 5 | 4 |

 +-------+-------+

 3 | 7 | 6 |

 +-------+-------+

 . | | |

 . | | |

STOREN STORE NIBBLE

Calling Sequence: SYSTEM STOREN

 or

 SYSSUK STOREN

 DEFW (Base address)

Arguments: C = Nibble displacement *NOT LOADED

 HL = Base address

 A = Nibble value to store *NOT LOADED

Description: STOREN is the inverse of INDEXN.

 STOREN works as with INDEXN.

INDEXW INDEX WORD

Calling Sequence: SYSTEM INDEXW

 or

 SYSSUK INDEXW

 DEFW (Base address)

Arguments: A = Displacement (0 - 255) *NOT LOADED

 HL = Base address of table

Output: DE = Entry looked up

 HL = Address of entry looked up

Description: Indexing looks like:

 DISPLACEMENT

 +---------------+

 BASE ADDRESS | | 0

 +---------------+

 1 | |

 +---------------+

 2 | | 1

 +---------------+

 3 | |

 +---------------+

 4 | | 2

 +---------------+

 5 | |

 +---------------+

 . | | .

 . | |

INDEXB INDEX BYTE

Calling Sequence: SYSTEM INDEXB

 or

 SYSSUK INDEXB

 DEFW (Base Address)

Arguments: A = Displacement (0 - 255)

 HL = Base address of table

Output: A = Entry looked up

 HL = Address of entry looked up

Notes:

INDEXB returns the byte at address

 (Base address) + (Displacement)

SETB STORE BYTE

Calling Sequence: SYSTEM SETB

 or

 SYSSUK SETB

 DEFB (Value to store)

 DEFW (Address)

Arguments: A = Byte value to store

 HL = Address to be set

Description: Stores an 8-bit value at a specified address.

SETW STORE WORD

Calling Sequence: SYSTEM SETW

 or

 SYSSUK SETW

 DEFW (Value to store)

 DEFW (Address)

Arguments: DE = Word value to store

 HL = Address to be set

Description: Stores a 16-bit value at a specified address.

CARTRIDGE CONVENTIONS

Two types of cartridges may be used with the Bally Professional Arcade.

The first type, called an autostart cartridge, is entered immediately

after reset. The only initialization that is performed before entry

is the set-up of the stack pointer to point just below system RAM and

the establishment of "consumer mode" in the custom chips. RAM is not

altered in this mode.

The second type, called a standard cartridge, is entered after a game

selection process is completed. Considerably more initialization is

done by the system before control transfer.

 1) System RAM is cleared to 0

 2) The ACTINT interrupt routine is enabled

 3) The MENU colors are set in the left color map

 4) Vertical blank is set at line 96, horizontal

 boundary at 41, and interrupt mode at 8.

 5) The screen displays the menu frame.

 6) The shifter is cleared.

An autostart cartridge is indicated by a jump instruction (opcode C3H)

at location 2000H. This jump instruction should branch to the starting

address of the cartridge.

A standard cartridge is indicated by a sentinel byte of 55H at location

2000H. Following this byte is the first node of the cartridge's menu

data structure. This data structure gives the name and starting

address of each program in the cartridge. (See MENU)

When the user has selected a cartridge game, control is transferred

to the starting address with the address of the program name string

in the registers. The cartridge program will use the GETPAR system

routine to prompt for game parameters such as score to play to,

game time limit or number of layers.

The cartridge has access to the six unused restart instructions. See

the following cartridge diagram for the transfer vectors.

BYTE

 +-----+-----+-----+-----+-----+-----+-----+-----+

2000 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | SENTINEL ($55)

 +-----+-----+-----+-----+-----+-----+-----+-----+ \

 1 | | |

 2 | NEXT MENU NODE | |

 +---+ | MENU NODE FOR

 3 | | > FIRST GAME ON

 4 | STRING ADDRESS FOR FIRST GAME | | CARTRIDGE

 +---+ |

 5 | | |

 6 | START ADDRESS FOR FIRST GAME | |

 +---+ /

 7 | | \

 8 | RST 8 | |

 9 | JUMP VECTOR | |

 +---+ |

 A | | |

 B | RST 16 | |

 C | | |

 +---+ |

 D | | |

 E | RST 24 | |

 F | | |

 +---+ | THESE CELLS

2010 | | | MAY BE USED

 1 | RST 32 | | FOR PROGRAM

 2 | | > IF THE

 +---+ | ASSOCIATED

 3 | | | RST OR HOOK

 4 | RST 40 | | IS NOT USED

 5 | | |

 +---+ |

 6 | | |

 7 | RST 48 | |

 8 | | |

 +---+ |

 9 | | |

 A | SENTRY HOOK TRANSFER VECTOR | |

 B | USED FOR DEMO PROGROMS | |

 +---+ /

HUMAN GETPAR

GET GAME PARAMETER

Calling Sequence: SYSTEM GETPAR

 or

 SYSSUK GETPAR

 DEFW (Prompt)

 DEFB (Digits)

 DEFW (Parameter)

Arguments: A = Number of digits to get

 BC = Address of prompt string

 DE = Title string address *NOT LOADED

 HL = Address of parameter to get

Description:

A menu frame is created displaying the title passed in DE at the top.

The message "ENTER" is displayed in the center of the screen followed

by the prompt string. GETNUM is entered with feedback specified

in 2X enlarged characters. After entry is complete, GETPAR pauses

for 1/4 second to allow user to see his entry and then returns.

Notes:

See entry conditions and resource requirements for menu.

Prompt string example: "# OF PLAYERS"

The title string address (DE) is usually the title returned from MENU.

The address of parameter to get (HL), HL points at the low-order byte

of BCD number in RAM.

HUMAN MENU

DISPLAY MENU AND BRANCH ON SELECTION

Calling Sequence: SYSTEM MENU

 or

 SYSSUK MENU

 DEFW (Title)

 DEFW (List)

Arguments: DE = Address of menu title string

 HL = Address of menu list

Output: DE = String address of selection mode

Description:

The title is displayed at the top of the screen. Each entry in the

menu list is then displayed with a preceding number supplied by MENU.

GETNUM is called to get the selection number. The menu list is searched

for the selected node and it is jumped to.

Notes:

A maximum of eight entries may appear.

On entry, MENU expects interrupts to be enabled, colors and boundaries

to be set up. MENU uses 96 lines of screen, creams the alternate set,

and requires three levels of context. MENU calls SENTRY and thus 'eats'

all irrelevant transitions.

 +----------+

 | NEXT | ADDRESS OF NEXT NODE ON LIST

 | | ZERO IF THIS NODE IS LAST

 +----------+

 | STRING | ADDRESS OF NAME OF THIS SELECTION

 | | THIS IS WHAT IS PASSED IN DE

 +----------+

 | GO TO | WHERE TO BRANCH TO IF THIS

 | | SELECTION IS SELECTED

 +----------+

Proofing Note: 'creams the alternate set' = 'creates the alternate set?'

HUMAN GETNUM

GET NUMBER

Calling Sequence: SYSTEM GETNUM

 or

 SYSSUK GETNUM

 DEFB (X address)

 DEFB (Y address)

 DEFB (CHRDIS options)

 DEFB (DISNUM options)

 DEFW (Number address)

Arguments: B = Display number routine options

 C = Character display routine options

 DE = Y,X co-ordinate for feedback

 HL = Address of where to put entered number

Description:

This routine inputs a number from either the keypad or the pot on

control handle of player one. Keypad entry has priority. The routine

exits when the specified number of digits were entered or = is pressed

on the keypad.

Pot entry is enabled by pressing the trigger. The current pot value is

then shown. Twist the pot until the number you want is shown. Then

press the trigger again to complete the entry. The pot can only enter 1

or 2 digits. If a group of numbers is being entered, the user must

enable entry for each new number.

 DISPLAY NUMBER OPTIONS

 +------+------+------+------+------+------+------+------+

 | ZERO | ALT | NUMBER OF DIGITS TO DISPLAY/ACCEPT |

 | SUPP | FONT | | | | | | |

 +------+------+------+------+------+------+------+------+

 CHARACTER DISPLAY OPTIONS

 +------+------+------+------+------+------+------+------+

 | ENLARGE | XOR | OR | ON | OFF |

 | FACTOR | | | COLOR | COLOR |

 +------+------+------+------+------+------+------+------+

HUMAN MSKTD

JOYSTICK MASK TO DELTAS

Calling Sequence: SYSTEM MSKTD

 or

 SYSSUK MSKTD

 DEFW (X Delta)

 DEFB (Flop flag)

 DEFW (Y Delta)

Arguments: B = Joystick mask *NOT LOADED

 C = Flop flag

 DE = X positive delta

 HL = Y positive delta

Output: DE = X Delta

 HL = Y Delta

Description:

This routine uses the joystick mask and flop flag to conditionally

modify the passed deltas. If negative direction is indicated, the delta

is 2's complemented: if no direction is indicated, 0 is returned.

Note: B is not sucked [by SYSSUK].

MATH RANGED

RANGED RANDOM NUMBER

Calling Sequence: SYSTEM RANGED

 or

 SYSSUK RANGED

 DEFB (N)

Arguments: A = N where 0 is less than or equal to a random

 number less than N

 (ie: for a random number of 0,1,or 2, N=3)

Output: A = Random Number

Notes:

If N is a power of 2, it is considerably faster to use N=0 which causes

an 8-bit value to be returned without ranging. Use an AND instruction

to range it yourself.

This routine uses a polynomial shift register RANSHT in system RAM.

RANGED is called in GETNUM while waiting for game selection/parameter

entry. Thus each execution of a program will receive different random

numbers. For 'predictable' random numbers, alter RANSHT yourself after

parameter acceptance.

Introduction

The Bally Professional Arcade is a full-color video game system based

on the mass-ram-buffer technique. A mass-ram-buffer system is one in

which one or more bits of RAM are used to define the color and

intensity of a pixel on the screen. The picture on the screen is

defined by the contents of RAM and can easily be changed by modifying RAM.

The system uses a Z-80 Microprocessor as it's main control unit. The

system ROM has software for four games: Gunfight, Checkmate,

Scribbling, and Calculator. Additional ROM can be accessed through

the cartridge connector. Three custom chips are used

for the video interface, special video processing functions, keyboard

and control handle interface, and audio generation.

The system exists in both high-resolution and low-resolution models.

The three custom chips can operate in either mode. The mode of operation

is determined by bit 0 of output port 8H. It must be set to 0

for low-resolution and 1 for high-resolution. This bit is not set

to 0 at power up and must be set by software before any RAM operations

can be performed.

Memory Map

In both the low and high resolution models, the operating system

ROM is in the first 8K of memory space. The cartridge ROM

is in the space from 8K to 16K. The standard screen RAM begins

at 16K. In the low-resolution unit, standard screen RAM is 4K

bytes; in the high-resolution unit it is 16K bytes. Magic screen RAM

begins at location 0. It is the same size as standard screen RAM. All

memory above 32K is available for expansion. In the low-resolution

unit, memory space 20K - 32K is available for expansion.

When data is read from a memory location between 0 and 16K the data

comes from the ROM. When data is written in a memory location (X)

between 0 and 16K, the system actually writes a modified form of the

data in location X+16K. The modification is performed by the magic

system in the Data Chip and Address Chip. Thus the RAM from 0 to 16K

is called Magic Memory.

Memory Map - Low-Resolution

[image: image1.png]~
MAGIC RAM{ 0000 -—QOFFF
> OPERATING
SYSTEM ROM

1000 — IFFF

/\

2000 —3FFF | > . TRIDGE ROM

#

4000 —4FFF }SCREEN RAM

~

AVAILABLE
>

5000 —FFFF FOR EXPANSION

Memory Map - High-Resolution

[image: image2.png]MAGIC RAM <

0000 — IFFF

2000 — 3FFF

4000 — 7FFF

8000 — FFFF

VAN

A

>

S

>

OPERATING
SYSTEM ROM

SCREEN RAM

AVAILABLE
FOR EXPANSION

Screen Map

In the Bally Professional Arcade, two bits of RAM are used to define

a pixel on the screen. One 8-bit byte of RAM therefor defines four

pixels on the screen.

In the low-resolution model there are 40-bytes used to define a line

of data. This gives a horizontal resolution of 160 pixels. The

vertical resolution is 102 lines. The screen therefor requires

102 X 40 = 4,080 bytes. The remaining 16 bytes of the 4K RAM are used

for scratch pad. More of the RAM may be used for scratchpad by blanking

the screen before the 102nd line. This will be described later.

In the High-resolution model there are 80 bytes and 320 pixels per line.

The 204 lines require 16,320 bytes of RAM. 64 bytes of the 16K RAM are

left for scratch pad.

In both models the first byte of RAM is in the upper left-hand corner

of the screen. As the RAM address increases, the position on the screen

moves in the same directions as the TV scan; from left-to-right and

from top-to-bottom. The four pixels in each byte are displayed with

the least significant pixel, the one defined by bits 0 and 1, on

the right.

Screen Map - Low Resolution

[image: image3.png]S3ININT 201 <

$31A9 Ob
I\

1

AN

/hl. € 13xid

H434b 31A4

0 13Xd ~, wizov 3148

/

HE8J24b 3148

HoOOt 31A8 <

€ 13Xid

L

s.meru|lJ@

Screen Map - High Resolution

[image: image4.png]$3NIT 02 £

S§31A8 08
N\

I |

1

N

s

Hd84L 31Ad

H4Y0v 3148

HOLJL 3lA8

HOOOV 3148

7

N

I

——

Color Mapping

Two bits are used to represent each pixel on the screen. These two

bits, along with the LEFT/RIGHT bit which is set by crossing the

horizontal color boundary, map each pixel to one of eight different color

registers. The value in the color register then defines the color and

intensity of the pixel on the screen. The intensity of the pixel is

defined by the three least significant bits of the register, 000 for

darkest and 111 for lightest. The color is defined by the five most

significant bits. The color registers are at output ports 0 through 7;

register 0 at port 0, register 1 at port 1, etc.

The color registers can be accessed as individual ports or all eight

can be accessed by the OTIR instruction. The OTIR instruction is to

port BH (register C=BH) and register B should be set to 8. The eight

bytes of data pointed to by HL will go to the color registers.

 HL --> Memory Location X Color Register 7

 X+1 Color Register 6

 X+2 Color Register 5

 X+3 Color Register 4

 X+4 Color Register 3

 X+5 Color Register 2

 X+6 Color Register 1

 X+7 Color Register 0

The horizontal color boundary (bits 0-5 of port 9) defines the horizontal position of an imaginary vertical line on the screen. The boundary

line can be positioned between any two adjacent bytes in the low-

resolution system. The line is immediately to the left of the byte

whose number is sent to bits 0-5 of port 9. For example, if the horizontal color boundary is set to 0, the line will be just to the left of

byte 0; if it is set to 20, the line will be between bytes 19 and 20 in

the center of the screen.

If a pixel is to the left of the boundary, its LEFT/RIGHT bit is set

to 1. The LEFT/RIGHT bit is set to 0 for pixels to the right of the

boundary. Color registers 0-3 are used for pixels to the right of the

boundary and registers 4-7 are used for pixels to the left of the

boundary.

In the high-resolution system, the boundary is placed in the same

position on the screen but between different bytes. If the value X

is sent to the horizontal color boundary, then the boundary will be

between bytes 2X and 2X-1. If the value 20 is sent, the boundary will

be between 39 and 40, in the center of the screen.

To put the entire screen, including the right side background, on

the left side of the boundary, set the horizontal color boundary to 44.

BACKGROUND COLOR

On most televisions the area defined by RAM is slightly smaller than the

screen. There is generally extra space on all four sides of the RAM

area. The color and intensity of this area is defined by the background

color number (bits 6 and 7 of port 9). These two bits, along with

the LEFT/RIGHT bit point to one of the color registers which determines

the color and intensity.

VERTICAL BLANK

The Vertical Blank Register (output port AH) contains the line number

on which vertical blanking will begin. In the low-resolution system

bit 0 should be set to 0 and the line number should be in bits 1-7.

In the high-resolution system the line number is in bits 0-7. The

background color will be displayed from the vertical blank line to the

bottom of the screen. This allows the RAM that would normally be

displayed in that area to be used for scratch pad. If the vertical

blank register is set to 0 the entire RAM can be used for scratch pad.

In a low-resolution system the register must be set to 101 or less;

in a high-resolution system it must be set to 203 or less.

SUMMARY

The following color register map shows which color registers are used

to define colors in different areas of the screen. The map assumes the

background color is set to 0. If it were set to 1 then color registers

1 and 5 would be used for background instead of 0 and 4. In the low-

resolution system the color boundary is between bytes X and X-1. In

the high-resolution system the boundary is between bytes 2X and 2X-1.

COLOR REGISTER MAP

[image: image5.png]hluz_n_h_..o N33¥0S _Il 3NITLNO VY3HY RvY 3INIT JNVI8 TVIILH3A

f 0 H31Si1934 HOT0D h ¥ H3L1S1934 Y000 J

€

€-—-0 SH3ILSI193Y HOI0D L~ SY¥31S193Y4 ¥OI0D

| X 3148 JiI-X 31A8]
)
_ :)

- X = AHVANNOG ¥OT00 TWLNOZINOH

INTERRUPT FEEDBACK

When the Z-80 acknowledges an interrupt it reads 8 bits of data from

the data bus. It then uses this data as an instruction or an address.

In the Bally Professional Arcade this data is determined by the contents

of the interrupt feedback register (output port DH). In responding

to a screen interrupt the contents of the interrupt feedback register

are placed directly on the data bus. In responding to a light pen

interrupt the lower four bits of the data bus are set to 0 and the upper

four bits are the same as the corresponding bits of the feedback register.

INTERRUPT CONTROL BITS

In order for the Z-80 to be interrupted the internal interrupt enable

flip-flop must be set by an EI instruction and one or two of the external

interrupt enable bits must be set (output port EH). If bit 1 is set,

light pen interrupts can occur. If bit 3 is set, screen interrupts can

occur. If both bits are set, both interrupts can occur and the screen

interrupt has higher priority.

The interrupt mode bits determine what happens if an interrupt occurs

when the Z-80's interrupt enable flip-flop is not set. Each of the two

interrupts may have a different mode. In mode 0 the Z-80 will continue

to be interrupted until it finally enables interrupts and acknowledges

the interrupt. In mode 1 the interrupt will be discarded if it is not

acknowledged by the next instruction after it occurred. If mode 1 is used

the software must be designed such that the system will not be executing

certain Z-80 instructions when the interrupt occurs. The opcodes of

these instructions begin with CBH, DDH, EDH, and FDH.

The mode bit for the light pen interrupt is bit 0 of port EH and the mode

bit for screen interrupt is bit 2 of EH.

SCREEN INTERRUPT

The purpose of the screen interrupt is to synchronize the software

with the video system. The software must send a line number to the

interrupt line register (output port FH). In the low-resolution system

bit 0 is set to 0 and the line number is sent to bits 1-7. In the high-

resolution system the line number is sent to bits 0-7. If the screen

interrupt enable bit is set, the Z-80 will be interrupted when the video

system completes scanning the line in the interrupt register. This

interrupt can be used for timing since each line is scanned 60 times

a second. It can also be used in conjunction with the color registers

to make as many as 256 color-intensity combinations appear on the screen

at the same time.

LIGHT PEN INTERRUPT

The light pen interrupt occurs when the light pen trigger is pressed

and the video scan crosses the point on the screen where the light pen

is. The interrupt routine can read two registers to determine the

position of the light pen. The line number is read from the vertical

feedback register (input port EH). In the high-resolution system the

line number is in bits 0-7. In the low resolution system the line number

is in bits 1-7, bit 0 should be ignored. The horizontal position of the

light pen can be determined by reading input port FH and subtracting 8.

In the low resolution system the resultant value is the pixel number,

0 to 159. In the high-resolution system the resultant must be multiplied

by two to give the pixel number, 0 to 358.

MAGIC REGISTER

As described earlier, the Magic System is enabled when data is written

to a memory location (X) from 0 to 16K. A modified form of the data is

actually written in memory location X+16K. The magic register (output

port CH) determines how the data is modified. The purpose of each bit

of the magic register is shown below.

 Bit 0 LSB of shift amount

 1 MSB of shift amount

 2 Rotate

 3 Expand

 4 OR

 5 XOR

 6 Flop

The order in which magic functions are performed is as follows:

Expansion is done first; rotating or shifting; flopping; OR or XOR.

As many as four can be used at any one time and any function can be

bypassed. Rotate and shift as well as OR and XOR cannot be done at

the same time.

EXPAND

The expander is used to expand the 8 bit data bus into 8 pixels (or

16 bits). It expands a 0 on the data bus into a two-bit pixel and a

1 into another two-bit pixel. Thus, two-color patterns can be stored

in ROM in half the normal memory space.

During each memory write instruction using the expander, either the

upper half or the lower half of the data bus is expanded. The half

used is determined by the expand flip-flop. The flip-flop is reset by

an output to the magic register and is toggled after each magic memory

write. The upper half of the data bus is expanded when the flip-flop

is 0, and the lower half when the flip-flop is 1.

The expand register (output port 19H) determines the pixel values

into which the data bus will be expanded. A 0 on the data bus will be

expanded into the pixel defined by bits 0 and 1 of the expand register.

A 1 on the data bus will be expanded into the pixel defined by bits

2 and 3 of the expand register.

The pixels generated by bit 0 or 4 of the data bus will be the least

significant pixel of the expanded byte. The most significant pixel

will come from bit 3 or 7.

SHIFTER

The shifter, flopper, and rotater operate on pixels rather than bits.

Each byte is thought of as containing four pixels, each of which has

one of four values. The four pixels are referred to as P0, P1, P2,

and P3. P0 is composed of the first two bits of the byte.

The shifter shifts data 0, 1, 2, or 3 pixels to the right. The shift

amount is determined by bits 0 and 1 of the magic register. The pixels

that are shifted out of one byte are shifted into the next byte. Zero's

are shifted into the first byte of a sequence. The shifter assumes the

first byte of a sequence is the first magic memory write after an output

to the magic register. Each sequence must be initialized by an output

to the magic register and data cannot be sent to the magic register in

the middle of a sequence.

FLOPPER

The output of the flopper is a mirror image of it's input. Pixel 0

and 3 exchange values as do pixel 1 and 2.

The diagrams on the following page show examples of shifting

and flopping.

SHIFTER - FLOPPER

[image: image6.png]P3

P2

Pl

PO

P?7

P6

PS5

P4

Pl

PiO

P9S

P8

P3

P2

Pl

PO

P7

P6

P5

Pa

Pl

P10

P9

P3

P2

Pl

PO

P7

P6

P5

P4

Pl

PIO

P3

P2

Pl

PO

P7

P6

PS5

P4

Pl

PO

Pl

P2

P3

P4

PS5

P6

P7

P8

P9

P10

Pil

ORIGINAL DATA

SHIFT |

SHIFT 2

SHIFT 3

FLOPPED

ROTATOR

The rotater is used to rotate a 4 X 4 pixel image 90 degrees in a clock-

wise direction. The rotator is initialized by an output to the magic

register and will re-initialize itself after every eight writes to

magic memory. To perform a rotation, the following procedure must be

performed twice. Write the top byte of the unrotated image to a location

in magic memory. Write the next byte to the first location plus 80, the

next byte to the first location plus 160, and the last byte to the first

location plus 240. After eight writes the data will appear in RAM and

on the screen rotated 90 degrees from the original image.

The rotator can only be used in commercial mode.

The diagram on the following page shows an example of rotating.

ROTATOR

[image: image7.png]P3 | P2 | PI PO
P7 | Pe | P5 | P4
pit | Ppio | P9 | Ps
5 | Pia | P13 | P12

ORIGINAL

ps | Pt | p7 | P3
Pia | o | Pre | P2
P3| po | P5 | PI
P2 | p8 | P4 | PO
ROTATED

OR AND XOR

These functions operate on a byte as 8-bits rather than four pixels.

When the OR function is used in writing data to RAM, the input to the

OR circuit is ORed with the contents of the RAM location being accessed.

The resultant is then written in RAM.

The XOR function operates in the same way except that the data is

XORed instead of ORed.

INTERCEPT

Software reads the intercept register (input port 8H) to determine if

an intercept occurred on an OR or XOR write. An intercept is defined as the

writing of a non-zero pixel in a pixel location that previously contained

a non-zero pixel. A non-zero pixel is a pixel with a value of 01, 10, or 11.

A 1 in the intercept register means an intercept has occurred. Bits 0 - 3

give the intercept information for all OR or XOR writes since the last

input from the intercept register. An input from the intercept register

resets these bits. A bit is set to 1 if an intercept occurs in the

appropriate position and will not be reset until after the next intercept

register input.

 Bit

 0 Intercept in pixel 3 in an OR or XOR write since last reset

 1 Intercept in pixel 2 in an OR or XOR write since last reset

 2 Intercept in pixel 1 in an OR or XOR write since last reset

 3 Intercept in pixel 0 in an OR or XOR write since last reset

 4 Intercept in pixel 3 in last OR or XOR write

 5 Intercept in pixel 2 in last OR or XOR write

 6 Intercept in pixel 1 in last OR or XOR write

 7 Intercept in pixel 0 in last OR or XOR write

PLAYER INPUT

The system will accommodate up to four player control handles at once.

Each handle has five switches and a potentiometer. The switches are

read by the Z-80 on input ports 10H - 13H and are not debounced.

The switches are normally open and normally feedback 0's.

The signals from the potentiometers are changed to digital information

by an 8-bit Analog-to-Digital Converter. The four pots are on input ports

1CH - 1FH. All 0's are fedback when the pot is turned fully counter-

clockwise and all 1's when turned fully clockwise.

The 24-button keypad is read on bits 0-5 of ports 14H-17H. The data

is normally 0 and if more than one button is depressed, the data should

be ignored. The keypad will not send back the proper data if any of

the player control switches are closed. Here again, the buttons are

not debounced.

Player control inputs are shown on the following page.

PLAYER INPUT

[image: image8.png]PORT | 7 5 4 3 2 I | o |eBiT
10H TRIG | RIGHT | LEFT | DOWN | uP PLAYER
IH TRIG | RIGHT | LEFT | DOWN | uP PLAYER
12H TRIG | RIGHT | LEFT | DOWN | uP PLAYER
I3H TRIG | RIGHT | LEFT | DOWN | UP PLAYER
14 H = + - X + | % KEYPAD
I5H 3 6 9 | cH v KEYPAD
16H 0 2 5 8 | Ms | A KEYPAD
| TH CE | 4 7 MR | © KEYPAD
1
ICH < POT > PLAYER
{ 1
!
|DH < POT > PLAYER
|
I
IEH < POT > PLAYER
1
]
IFH < POT > PLAYER

MASTER OSCILLATOR

The frequency of the master oscillator is determined by the contents

of several output ports. Port 10H sets the master frequency. It is

given by the following formula:

 1789

 F_m = ------------ Khz

 PORT 10H + 1

If bit 4 of output port 15H is set to 1, the master oscillator

frequency will be modulated by noise. The amount of modulation will be

set by the 8-bit noise volume register, output port 17H.

If bit 4 of output port 15H is set to 0, the frequency of the master

oscillator will be modulated by a constant value to give a vibrato

effect. The amount of modulation will be set by the vibrato depth

register (the first 6 bits of output port 14H). The speed of the modulation

is set by the vibrato speed register (upper 2 bits of output port 14H);

00 for fastest and 11 for slowest.

Frequency modulation is accomplished by adding a modulation value to the

contents of port 10H and sending the result to the master oscillator

frequency generator. In noise modulation, the modulation value is an

8-bit word from the noise generator. If a bit in the noise volume

register is set to 0, the corresponding bit in the modulation value

word will be set to 0. In vibrato modulation, the modulation value

alternates between 0 and the contents of the vibrato volume register.

Modulation can be completely disabled by setting the master volume to 0

if noise modulation is being used, or by setting the vibrato depth

to 0 when vibrato is used.

TONES

The system contains three tone generators each clocked by the same

master oscillator. The frequency of Tone A is set by output port 11H,

Tone B by output port 12H, and Tone C by output port 13H. The

frequency is given by the following formula:

 F_m 894

F_. = ----------------------------- = ----------------------------------- Khz

 2(contents of TONE PORT + 1) (PORT 10H+1) (contents of TONE PORT+1)

Proofing Note: 'F_.' = 'F Subscript Up-Arrow'

The tone volumes are controlled by the output ports 15H and 16H. The

lower 4 bits of port 16H set Tone A Volume, the upper 4 bits set Tone

B Volume. The lower 4 bits of port 15H set Tone C Volume. Noise can

be mixed with the tones by setting bit 5 of port 15H to 1. In this case

the noise volume is given by the upper 4 bits of port 17H. In all

cases a volume of 0 is silence and a volume of all 1's is loudest.

SOUND BLOCK TRANSFER

All 8 bytes of sound control can be sent to the audio circuit with

one OTIR instruction. Register C should be sent to 18H, register

B to 8H, and HL pointing to the 8 bytes of data. The data pointed to

by HL goes to port 17H and the next 7 bytes of data goes to ports 16H

through 10H.

 HL -> Memory Location X Data-to-port 17H

 X+1 Data-to-port 16H

 X+2 Data-to-port 15H

 X+3 Data-to-port 14H

 X+4 Data-to-port 13H

 X+5 Data-to-port 12H

 X+6 Data-to-port 11H

 X+7 Data-to-port 10H

AUDIO GENERATOR BLOCK DIAGRAM

[image: image9.png]U3aayv

HOLVH3N39 3SION
TOHLINOD OLVHSBIA
HOLVT1IIDSO H31SVYW
TJOHLNOD 3JWNTI0A
HOLVY3N39 3NOL
HOLV

H3aIX3dILINW

ON

oA

oW

ol

XNW

oianvy

o1

oL

aav

oL

oA

OUTPUT PORTS

PORT NUMBER FUNCTION

----------- --------

 0H Color Register 0

 1H Color Register 1

 2H Color Register 2

 3H Color Register 3

 4H Color Register 4

 5H Color Register 5

 6H Color Register 6

 7H Color Register 7

 8H Low/High Resolution

 9H Horizontal Color Boundary, Background Color

 AH Vertical Blank Register

 BH Color Block Transfer

 CH Magic Register

 DH Interrupt Feedback Register

 EH Interrupt Enable and Mode

 FH Interrupt Line

 10H Master Oscillator

 11H Tone A Frequency

 12H Tone B Frequency

 13H Tone C Frequency

 14H Vibrato Register

 15H Tone C Volume, Noise Modulation Control

 16H Tone A Volume, Tone B Volume

 17H Noise Volume Register

 18H Sound Block Transfer

 19H Expand Register

INPUT PORTS

PORT NUMBER FUNCTION

----------- --------

 8H Intercept Feedback

 EH Vertical Line Feedback

 FH Horizontal Address Feedback

 10H Player 1 Handle

 11H Player 2 Handle

 12H Player 3 Handle

 13H Player 4 Handle

 14H Keypad Column 0 (right)

 15H Keypad Column 1

 16H Keypad Column 2

 17H Keypad Column 3 (left)

SYSTEM BLOCK DIAGRAM

[image: image10.png]aQVdA3
NOLLNE 2

diH)
0/1

SITANVH
TOYLNOD

13S AL 0L €<—

HOLVINQOW
£

d1HO
viva

onTd
H3AQN3LX3

[—>

=me2

WOY
3113SsSvO
31A8 X8

Wvy
3iag A

diHO
SS34aav

HOTOADONOIN

NOY
W3LlSAS
31A8 X8

N3d LHOIT n.l.Tll_

Nndd 08-Z

MICROCYCLER

The purpose of the microcycler is to combine the 16-bit Address Bus

and the 8-bit Data Bus from the Z-80 into one 8-bit Microcycle Data Bus

to the Data Chip, Address Chip, and I/O Chip. This was done to reduce

the pin count on the custom chips.

The Microcycle Data Bus can be in any of four modes. Its mode is

controlled by MC0 and MC1 coming from the Data Chip and RFSH# from the

Z-80. The modes are shown below.

RFSH# MC0 MC1 Microcycle Data Bus Contents

----- --- --- ----------------------------

 0 0 0 A0 - A7 from Z-80

 0 0 1 A0 - A7 from Z-80

 0 1 0 A0 - A7 from Z-80

 0 1 1 A0 - A7 from Z-80

 1 0 0 A0 - A7 from Z-80

 1 0 1 A8 - A15 from Z-80

 1 1 0 D0 - D7 from Z-80

 1 1 1 D0 - D7 to Z-80

MC0 and MC1 change 140 usec after the rising edge of Phi. Their

changes are shown in the timing diagrams of various instruction cycles.

MICROCYCLER BLOCK DIAGRAM

[image: image11.png]SNg viva

JTIAI0YIINW s

@oW

410

N
—\.W

TIW

] 2

L0-da

08-1

SIv-8Y

LY-8Y

ADDRESS CHIP DESCRIPTION

The Microcycle Decoder generates twelve bits of Z-80 address from the

8-bit Microcycle Data Bus. This address is then fed through MUX I and

MUX II to MA0-5 which go to the RAM. The Scan Address Generator

generates a 12-bit address which is used to read video data from the

RAM. This address goes from 0 to FFFH once every frame (1/60 sec.).

MUX I sends either the Scan Address or Z-80 Address to its 12 outputs.

An output of the Scan Address Generator controls MUX I. If the Scan

Address Generator and the Z-80 request memory cycle at the same time,

the Scan Address Generator will have higher priority and the Z-80 will

be required to wait (by the WAIT# output). The Scan Address Generator

never requires the memory for more than one consecutive memory cycle,

so the Z-80 is never required to wait for the memory for more than one

cycle. HORIZ DR and VERT DR synchronize the Scan Address Generator

with the Data Chip and the TV Scan.

The purpose of MUX II is to multiplex its 12 inputs to the six address

bits in the two time slices required for 4K x 1 16 pin RAMS.

The Memory Cycle Generator controls memory cycles generated by either the Z-80

or Scan Address Generator. MREQ#, RD#, M1#, RFSH#, and A12-A15 are from the

Z-80. A12-A15 are fed directly from the Z-80 because if they were brought

out of the microcycle decoder, they would arrive too late in the memory

cycle. The RAS0 - RAS3 outputs are used to activate memory cycles. In the

consumer game, only RAS0 is used to one bank of RAM (4K x 8). In the commercial

game, all four RAS's are used to control four banks of RAM (16K x 8). WRCTL and

LTCHD0 are control signals to the Data Chip. WRCTL tells the Data Chip when to

place data to be written to memory on the memory data bus. LTCHD0 tells

the Data Chip when valid data from RAM is present on the memory data bus.

As mentioned earlier, WAIT# is generated when the Z-80 and Scan Address

Generator both request memory at the same time. WAIT# is also generated

for one cycle every time the Z-80 requests a memory access, even if there

is no conflict with the Scan Address. This is because the microcycler

slows down Z-80 memory accesses. The Z-80 address bus and data bus must

time share the microcycle bus so the Z-80 data reaches the microcycle bus

very late in the memory cycle.

The INT Generator generates two types of interrupts to the Z-80; Light

Pen and Screen interrupts. A screen interrupt is generated when screen

interrupts are enabled and the TV scan completes a certain line on the

screen (from 0 to 255). The line at which the interrupt will occur is

determined by the Z-80. This interrupt can be used for timing since the

TV rescans every line once every 1/60th sec. A light pen interrupt occurs

when the light pen interrupt is enabled and LIGHT PEN# goes low. The

current scan address is saved in latches in the Scan Address Generator.

The Z-80 can read the contents of these latches to determine the scan

address at the time LIGHT PEN# was activated and thus the position of the

light pen on the screen.

The I/O Decode circuit is used during Z-80 input and output instructions.

Z-80 input instructions are used to read the scan address after light pen

interrupts. Output instructions are used to enable the two interrupts and

set the line number for screen interrupts.

ADDRESS CHIP BLOCK DIAGRAM

[image: image12.png]N3d -LH9I1

GYW-@BYW —

11 XNW

¥OLV¥INI9
LdNYYIINI INI
INI N33¥DS
0QHIL1 mmewﬁ<
1LIYM LU ELER ===
£SYY-dSvy AUOWIH ad
ERL
¥OLVYINID NUREL
$$340ay
NYIS 40 Z1YOH
DY01I
. SYILSI9Y —
0/1
— 4300730
——1 I XMW 4371042 r..kf..... L0-BaXNW
N N) (%

DATA CHIP DESCRIPTION

The TV Sync Generator uses 7M and 7M# (7.159090 Mhz square waves) to

generate NTSC standard sync and blank to be sent to the Video Generator.

It also generates HORIZ DR and VERT DR for synchronization with the

Address Chip. HORIZ DR occurs once every horizontal line (63.5 usec),

and VERT DR occurs once every frame (16.6 msec).

The Shift Register loads parallel data from the memory data bus (MD0 - MD7)

and shifts it out of its two serial outputs. The TV Sync Generator controls

when data is loaded or shifted. In a consumer game, the two outputs of

the shift register are sent through MUX I to MUX II. In a commercial

game, SERIAL 0 and SERIAL 1 are sent through MUX I and MUX II. The

two bits from MUX I select 8 bits to be sent through MUX II to the Video

Generator. These 8 bits then determine the analog voices of VIDEO, R-Y,

and B-Y. 2.5V is a 2.5V D C reference level.

The Clock Generator generates 0G and PX# from 7M. These are the clocks

for the rest of the system. The Frequency of PX# is half that of 7M

and the frequency of 0G is half that of PX#.

The Microcycle Generator generates the microcycle control bits, MC0 and

MC1 from IORQ#, MREQ#, RD#, and M1#, all from the Z-80.

In memory write cycles WRCTL is activated and the Memory Control circuit

generates DATEN#. The Magic Function Generator takes the data from the

Z-80 on MUXD0 - D7 and transfers it to MD0 - MD7. If a Magic write is

being done, the Magic Function Generator will modify the data as required

before it places it on the memory data bus.

A Magic write is a memory write cycle in which data is written to a

location, (X) from 0 to 16K. All memory from 0 to 16K is ROM and cannot

be modified. The data is modified by the Magic Function Generator and

is written to location X + 16K. The way in which the data is modified is

determined by the 7 bits coming from the I/O registers.

In memory reads, data is transferred from MD0 - MD7 to MUXD0 - MUXD7.

Also, LTCHD0 is activated which causes the data from RAM to be latched

up in a register in the Magic Function Generator. This latched data

is used in some magic functions.

The I/O registers are loaded by output instructions from the Z-80 just

as in the Address Chip.

DATA CHIP BLOCK DIAGRAM

[image: image13.png]Xd = 40lv43INT9 p— M.
9§ ———— N0V ——— W
1N —— .
¥OLVYINI9 p——— O
40 7140H —g— ONAS AL }—— Wt 0, P — —
ANV g l
“INAS
NG 2
A-§ —a—— YOLYYINIY
J04LNOD OQHIL
8%” —e—1 030IA NILYE ——1 jyouaw 110N
. v NN LELER)
NOI1JNN4
¥31S193Y .
141HS
1 WIY3s o <4— S¥3ILST93Y FI 0y01
¢ WIYIS ——— _ r - /1 |4
1T X0W
¥300230
43108 —— ra-eaxnw

~O04IIW

I/O CHIP DESCRIPTION

The Z-80 communicates with the I/O Chip through input and output

instructions. The state of an 8 x 8 switch matrix can be read through

the Switch Scan circuit. When an input instruction is executed, one

of the SO0-SO7 lines will be activated. When a line is activated, the

switch matrix will feed back eight bits of data on SI0-SI7. This data

is in turn fed to the Z-80 through MUXD0 - MUXD7.

The Z-80 can read the position of four potentiometers (pots) through the

A-D Converter circuit. The pots are continuously scanned by the A-D

Converter and the results of the conversions are stored in a RAM in the

A-D Converter circuit. The Z-80 simply reads this RAM with input

instructions.

The Z-80 loads data into the Music Processor with output instructions.

This data determines the characteristics of the audio that is generated.

The Music Processor is described in detail below.

I/O CHIP BLOCK DIAGRAM

[image: image14.png]o1any

IYRISIA
SONOK
€104 - #10d

LIS - @IS

L0S - dos

40S53204d
JISAH

d0L¥3ANOD a-V

NYJS HILIMS

4300030
3740401

——— (0 - #aXMW
————

byoL

MUSIC PROCESSOR

The music processor can be divided into two sections. The first section

generates the Master Oscillator Frequency and the second section uses the

Master Oscillator Frequency to generate tone frequencies and the analog

audio output. The contents of all registers in the Music Processor are

set by output instructions from the Z-80.

Master Oscillator Frequency is a square wave whose frequency is determined

by the 8 binary inputs to the Master Oscillator. This 8-bit word is the

sum of the contents of the Master Oscillator Register and the output

of the MUX. The MUX is controlled by MUX REG.

If MUX REG contains 0, then data from the Vibrato System will be fed

through the MUX. The two bits from the Vibrato Frequency Register

determine the frequency of the square wave output of the Low Frequency

Oscillator. The 6-bit word at the output of the AND gates oscillates

between 0 and the contents of the Vibrato Register. The frequency of

oscillation is determined by the contents of the Vibrato Frequency

Register. The 6-bit word, along with two ground bits are fed through

the MUX to the Adder. This causes the Master Oscillator Frequency to be

modulated between two values thus giving a Vibrato effect.

If MUX REG contains 1, then data from the Noise System will be fed

through the MUX. The 8-bit word from the Noise Volume Register

determines which bits from the Noise Generator will be present at the

output of the AND gates.

If a bit in the Noise Volume Register is 0, then the corresponding

bit at the output of the AND gates will be 0. If a bit in the Noise

Volume Register is 1, then the corresponding bit at the output of the

AND gates will be noise from the Noise Generator. This 8-bit word is

sent through the MUX to the Adder. The Master Oscillator Frequency is

modulated by noise.

In the second part of the Music Processor, the square wave from the

Master Oscillator is fed to three Tone Generator circuits which produce

square waves at their outputs. The frequency of their outputs is

determined by the contents of their Tone Generator Register and Master

Oscillator Frequency. The 4-bit words at the output of the AND gates

oscillate between 0 and the contents of the Tone Volume Register. These

4-bit words are sent to D-A Converters whose outputs oscillate between

GND and a positive analog voltage determined by the contents of the Tone

Volume Register.

One Noise bit and four Noise Volume bits from the first section of the

Music Processor are fed to a set of AND gates. This set of AND gates

operates the same way as the AND gates for the tones, except that the

Noise AM Register must contain a 1 for the outputs of the AND gates to

oscillate. The analog outputs of the four D-A Converters are summed to

produce the single audio output.

MASTER OSCILLATOR BLOCK DIAGRAM

[image: image15.png]ADNINDIYS ¥OLVIIIISO ¥ILSYW

40LV1113S0 ¥3LSYW

-y300v 119-8

4315193y
d0LY1T13S0 ¥3ILSWW

401v1112S0

XMW

AININDIY4 MO

[4

4315193y
AININDIYS OLYHGIA

43151934 0LYYEIA

ISION

43151938 XNW

3WNT0A ISTON

1

J0L1vY3NI9 ISTON

4315193y
JNNTON ISION

TONE GENERATORS

[image: image16.png]orany

v-a

; 431S1934 WY 3ISION

IWNTOA 3SION

ISION

J YOLiVY¥3N3I9 3INOL

43151934 2,

d3LS193Y D, 3JWNTOA 3NOL HOLYHINID 3INOL

J 1

9 ¥OLVY3INI9 3INOL

Y3159 .6,

431S1934 4, FHNT0A 3INOL HOLYYINTD INOL

Y 40LVYINTD INOL

N

431S193Y v,

Y3LSI93Y ¥, JWNIOA 3INOL YOLV¥INI9 INOL

AONINDINA
dOLY 111350
YILSYW

CUSTOM CHIP TIMING

The following diagrams show the relationship of various signals

in the system during different types of operations. Delays are

shown to be zero nsec from the clock edge which cause the transition.

The actual delay is given in "Electrical Specifications for Midway

Custom Circuits."

MUXD0 - MUXD7 is an 8-bit bidirectional address and data bus for

the custom chips. By using this technique, 16 bits of address and

8 bits of data can be sent to the custom chips on 8 wires. The

state of the bus is determined by MC0 and MC1 from the data chip

and RFSH# from the Z-80.

RFSH# MC1 MC0

----- --- ---

 L L L A0 - A7 to custom chips

 L L H A0 - A7 to custom chips

 L H L A0 - A7 to custom chips

 L H H A0 - A7 to custom chips

 H L L A0 - A7 to custom chips

 H L H A8 - A15 to custom chips

 H H L D0 - D7 to custom chips

 H H H D0 - D7 from custom chips

MEMORY WRITE WITHOUT EXTRA WAIT STATE

[image: image17.png]— I 1 L
L J
1 [_ [1 Lvm
| J
| | I—
[— L 1 L D3IuN

MEMORY WRITE WITH VIDEO WAIT STATE

[image: image18.png]1L0HM

N3Lva

ol §

MEMORY READ WITHOUT EXTRA WAIT STATE

[image: image19.png]OQHI1

Svi

LiVM

LONW

OON

MEMORY READ WITH VIDEO WAIT STATE

[image: image20.png]OQHO.1

CVYN-QOVN

SVY

| 1] L 1IVM

| L J , ION

I/O READ FROM PORT 10H - 17H

[image: image21.png]LIS-0QIS

L0S-00S

11VM

-

FON

OONn

ay

L

I

L

(v1°[0]

I/O READ FROM OTHER THAN PORT 10H - 17H

[image: image22.png]LIS-0QIS

L0S-00S

11VM

-

FON

OONn

ay

L

I

L

(v1°[0]

I/O WRITE

[image: image23.png]1IVM

L

ION

Q0N

VIDEO TIMING

The frequency of PX# is half that of 7M and the 0 is one-fourth 7M.

There are 455 cycles of 7M per horizontal line and 133 3/4 Phi cycles

per line. Because of the extra 3/4 cycle, 0 must be resynchronized

at the beginning of each line. This is done by stalling 0 for

3 cycles of 7M. PX# is also stalled for the same amount of time.

The timing relationship is shown below. The diagram also shows

the relationship of VERT DR to HORIZ DR. The two RAS pulses shown

are the first two video RAS signals of a line, each line contains

forty.

RELATIONSHIP BETWEEN 7M, HORIZ DR, VERT DR, PHI G, PX AND RAS

[image: image24.png]SYY ONY Xd ‘9§ ‘40 1¥3A “¥Q ZI¥OH W/ NIIMLIS JIHSNOILY1IY

l] 44 L1YH3A

| ¥Q ZINOH
RERInnnngunnnnnhpnnhnpip i

RELATIONSHIP BETWEEN HORIZ DR, HORIZ BLANK, HORIZ SYNC AND COLOR BURST

--

[image: image25.png]r

AS

r

AG

rO

AS

ho

Ap

Wyd NI Y1vQ 3HL A9 GINIWYIL3Q 39VL7I0A V3IYY G3AVHS

N/ 40 SITIAD SSY A¥IAT S1V3dIY NY3Llvd 3IHL

W 40 S313A0 &€ 01 WnD3 ST NOISIAIQ TVINOZIYOH HIV3

1S¥Ng ¥010D GNY INAS ZI¥OH “INV18 ZI¥OH “dQ ZIYOH N3I3IM138 JIHSNOILV13Y

——

ANVI8 ZIYOH

oo

:s:
4 ZIYOH
- b
AG'2Z A—d
AL L -
3 A8
J AQ |
A} Al
O34alA

RELATIONSHIP BETWEEN VERTICAL SYNC, VERTICAL BLANK AND VERTICAL DRIVE

[image: image26.png]NVJIS TYINOZIYOH 3INO SIN3S3IYd3¥ NOISIAIQ YINOZIYOH HIVI
JAINQ TYIILYIA GNYV ANVIE TWIILY3IA “INAS TVIILYIA NIIMLIG JIHSNOILVIZY

€357 1Nd NOLLYZI'vND3

Hilm
SONAS TVLNOZINOH ONAS TYOILHIA
AN /\
N/ A\
LT o
= 3AIHG LY3A

JNVIE LY3A

Prerrerrerrerererre b L T I O I O A B A O

Pl
NYIS TWLNOZWOH IND SiNISMdN -i).- Hov3

 - 1 -

ELECTRICAL SPECIFICATION FOR MIDWAY CUSTOM CIRCUITS

I. GENERAL SYSTEM PARAMETERS | REVISIONS:

 | ---------

 I. A. Power Supplies | 1/14/77 N/C

 -------------- | 1/27/77 A 135

 | 3/25/77 B

 1. VDD=+5.0V +/- 5% | 7/6/77 C

 2. VGG=+10.0V +/- 5%

 3. VSS=0.0V

 I. B. Timing Signals

 1. 0 & 0#; Period = 560nsec, High time^* 240nsec to 260nsec.

 0 & 0# have zero level crossover +1 volt -0 volts.

 t_r, t_f^* less than 20nsec

[image: image27.png].9VpD /"‘—_5 f_——
/i

.7V to OV

.

___________.
\

(Times are in nsec)
>240 |tgc20

<260 | ri <20

560 S

]

 2. 7M & 7M#; Period = 140nsec, High time^+ 50nsec to 70nsec

 7M & 7M# have zero level crossover +1 volt -0 volt

 t_r, t_f^+ less than 15nsec

[image: image28.png](Times are in nsec)

 Dead time <= 5nsec

 Max C Load = 20pf

 +Note

 1) High time is time clock at >=.6V.

 2) Rise time from zero level to one level.

 - 2 -

 I. B. (Continued)

 *Note:

 1. High time is time between 50% points.

 2. Clock signals are generated by low power Shottky Logic

 (series 74LS). Full level swing on clock signals to be

 achieved through external resistor to V_DD. Zero level

 .7V to 0V.

 3. Rise time from zero level to .9V_DD.

 I. C. Z80 Data Bus (MUXD0-MUXD7)

 1. Z80 Data Bus interface requires a three-state output/input

 buffer. The three states are defined below.

 2. Logic 0: .5V + noise generated by chip, noise for address

 chip is .15V @ -430uA

 3. Logic 1: 2.7V @ +70uA

 4. High Impedance: Leakage at either logic 0 or 1 to be

 less than 5uA.

 5. Transient Response: Transition from High Impedance to

 0 or 1 will be complete within 442nsec

 of the 90% point of 0# of the last wait

 state of input cycle or 442nsec of the

 90% point of the 0 of the second wait state

 of the interrupt acknowledge cycle.

 The maximum load will be 80pf. This

 includes 14pfd for two custom chips.

 6. Exception: The path through the Data chip connecting

 the RAM bus with the Z80 bus shall introduce

 a maximum of 160nsec of delay.

 7. The low address byte will be valid on the Z80 Data Bus

 at least 62nsec before 0#. The high address byte will

 be valid at least 79nsec before 0#. The data byte will be

 valid 55nsec before 0#.

 - 3 -

 I. D. RAM Data Bus (MD0-MD7) - Home Game

 1. The RAM Data Bus will require three state logic buffers.

 2. Logic 0: .5V @ -25uA

 3. Logic 1: 2.7V @ +25uA

 4. High Impedance: 5uA maximum leakage at either logic 0 or 1.

 5. Transient Response: The outputs shall transition from High

 Impedance to 0 or 1 within 120nsec of 7M.

 The outputs shall transition from 1 or 0

 to high impedance within 20nsec of 7M.

 Maximum load will be 20pf.

 I. E. RAM Data Bus (MD0-MD7) - Commercial Game

 1. The RAM Data Bus will require three state logic buffers.

 2. Logic 0: .5V @ -200uA

 3. Logic 1: 2.7V @ +25uA

 4. High Impedance: 5uA maximum leakage at either logic 0 or 1.

 5. Transient Response: The outputs shall transition from High

 Impedance to 0 or 1 within 120nsec of

 7M. The output shall transition from

 1 or 0 to High Impedance within 2nsec

 of 7M. Maximum load will be 10pf.

 I. F. Ambient operating temperature >= 0'C, <= 55'C

 I. G. Storage temperature >= -65'C, <= 150'C.

 I. H. Packing 40 pin plastic.

II. CUSTOM CIRCUIT SPECIFICATION

 This specification defines the terminal characteristics for

 each of the custom circuits. These specifications shall take

 precedence in case of conflict. All 0 references refer to

 the 0 and 0# inputs to the address and I/O chip.

 - 4 -

II. A. Data Chip

 1. Input Pin List V0 V1 t_d (Low)^1 t_d (High)^1 Ref.

 -- -- ----------- ----------- ----

 (V) (V) (nsec) (nsec)

 MREQ# .5 2.45 132 6 7M

 RD# .5 2.45 12 6 7M

 IORQ# .5 2.45 112 126 7M

 7M See Section I.B.

 7M# See Section I.B.

 WRCTL# .5 3.1 82 82 7M

 M1# .5 2.45 12 82 7M

 LTCHDO .5 3.1 120 120 7M

 Serial 0 .5 2.45 30 30 7M

 Serial 1 .5 2.45 30 30 7M

 2. Power Supplies

 See Section I. A.

 3. Bus Connections

 MXD0 See Z80 Data Bus Spec. Section I.C.

 MXD1 " "

 MXD2 " "

 MXD3 " "

 MXD4 " "

 MXD5 " "

 MXD6 " "

 MXD7 " "

 MD0 See RAM Data Bus Spec Section I.D.

 MD1 " "

 MD2 " "

 MD3 " "

 MD4 " "

 MD5 " "

 MD6 " "

 MD7 " "

 - 5 -

 4. Outputs V0 I0 V1 I1 CAP t_p Ref.

 -- -- -- -- --- ---- ----

 (V) (uA) (V) (uA) (pf) (nsec)

 VIDEO* * 10 100 7M

 R-Y* * 10 600

 B-Y* * 10 600

 HORIZ DR Note 4 400 2.7 20 20 20 7M

 VERT DR Note 4 400 2.7 20 20 20 7M

 2.5V^6 -- -- -- -- -- DC

 0 Note 4 400 2.7 20 10 100 7M

 PXCLK# Note 4 400 2.7 20 10 100 7M

 MC0 Note 4 400 2.7 20 10 120 7M

 MC1 Note 4 400 2.7 20 10 120 7M

 DATEN# Note 4 400 2.7 20 10 90 7M

 *Video, R-Y, B-Y are analog outputs at 140nsec rate. Video,

 must switch from 10% to 90% of black to white in 140nsec.

 R-Y and B-Y transitions not to exceed .6usec.

 1 t_d (Low) and t_d (High) is maximum time in nsec except where a

 minimum is shown.

 2 For IORQ# Ref. to 0# t_d (Low)=132nsec t_d (High)=6nsec.

 3 Serial 0 and Serial 1 will operate at 7MHz

 4 .5 + noise generated by chip.

 5. Tap on both resistor chains for a capacitor. Will become test

 input with voltage applied > 8V.

 6 The Z80 0 is generated by this signal with a clock driver which

 introduces a delay of <20nsec.

 - 6 -

II. B. I/O Chip

 1. Input Pin List V0 V1 Ref t_d (High) t_d (Low)

 -- -- --- --------- ---------

 (nsec) (nsec)

 Reset .5 2.45

 MONOS Note 1

 RD# .5 2.45 0 or 0# 166 172 0 or 0#

 IORQ# .5 2.45 0^6 146 0# 132 0

 0 See Section I.B.

 0# See Section I.B.

 SI0 .5 3.3 Note 3

 SI1 .5 3.3 Note 3

 SI2 .5 3.3 Note 3

 SI3 .5 3.3 Note 3

 SI4 .5 3.3 Note 3

 SI5 .5 3.3 Note 3

 SI6 .5 3.3 Note 3

 SI7 .5 3.3 Note 3

 TEST .5 5.0 DC

 2. Power Supplies

 See Section I.A.

 3. Bus Connections

 MUXD0 See Z80 Data Bus Spec Section I.C.

 MUXD1 " "

 MUXD2 " "

 MUXD3 " "

 MUXD4 " "

 MUXD5 " "

 MUXD6 " "

 MUXD7 " "

 4. Outputs V0 I0 V1 I1

 -- -- -- --

 (V) (uA) (V) (uA)

 Audio Note 4 Fmax - 20KHz

 Discharge Note 5 .5V 4V

 SO0 Note 3 Note 7 200 4V 1650

 SO1 Note 3 Note 7 200 4V 1650

 SO2 Note 3 Note 7 200 4V 1650

 SO3 Note 3 Note 7 200 4V 1650

 SO4 Note 3 Note 7 200 4V 1650

 SO5 Note 3 Note 7 200 4V 1650

 SO6 Note 3 Note 7 200 4V 1650

 SO7 Note 3 Note 7 200 4V 1650

 POT 0 Note 2 5 V_DD-.5 50

 POT 1 Note 2 5 V_DD-.5 50

 POT 2 Note 2 5 V_DD-.5 50

 POT 3 Note 2 5 V_DD-.5 50

 - 7 -

 Note 1 MONOS triggers at 2.1 volts +/- 2% +/- noise voltage

 when the supply is 5.25V.

 Note 2 Open source-Voltage measured with 0.2ma.

 Note 3 Time from load of address into microcycle register

 to date valid on MUX data bus from SI inputs

 (data path through address decoder, out on SO

 outputs, through closed switch and isolation diode,

 into SI input to MUX Data Bus) shall be 2usec max.

 Drop of isolation diode will be 0.7V max. SO must

 drive 2kohm in the high level. Max C load of SO

 shall be 300 pf. SI input shall kill device

 enabled by INPUT#.

 Note 4 Audio voltage oscillates between 0V and one of the

 following voltages; .33, .67, 1.00, 1.33, 1.67, 2.00,

 2.33, 2.67, 3.00, 3.33, 3.67, 4.00, 4.33, 4.67, and

 5.00. These voltages should be +/- 6%. The load shall

 be 1000pf and 100kohm.

 Note 5 Discharge is open drain to V_SS. Discharges .01ufd

 capacitor to .2V in 144usec.

 Note 6 For IOREQ# Ref. to 0# t_d (Low)=152nsec t_d(High)=166nsec.

 Note 7 .5V + noise generated by I/O chip.

Miscellaneous Timing

 Time for MO Adder - 20 max

[image: image29.png]S

Sop {>°

!
05 o Dc {S.Zk {Qs.% 6.2K]

o—

] "'E;j
Input ° =t . s =
P ll |”,_J—L% ”l;\%
SIp | SI1 SI2

No more than three switches on each SO are closed at one time.

 - 8 -

II. C. Address Chip

 1. Input Pin List V0 V1 t_pd (Low) t_pd (High) REF

 -- -- ---------- ---------- ---

 (V) (V) (nsec) (nsec)

 RFSH# .5 2.45 222 0 216 0

 MREQ# .5 2.45 152 0# 166 0 or 0#

 RD# .5 2.45 172 0 or 0# 166 0 or 0#

 MI# .5 2.45 176 0 242 0

 A12^1 .5 2.45 0

 A13^1 .5 2.45 0

 A14^1 .5 2.45 0

 A15^1 .5 2.45 0

 IORQ# .5 2.45 132 0 146 0#^2

 LIGHT PEN# .5 2.45 Asyn

 TEST# .5 5.0 DC

 HORIZ. DR. .5 2.45 Note 3 0#

 VERT. DR. .5 2.45 Note 4 0

 0 See Section I.B.

 0# See Section I.B.

 2. Power Supplies

 See Section I.A.

 3. Bus Connections

 MXD0 See Z80 Data Bus Spec Section I.E.

 MXD1 " "

 MXD2 " "

 MXD3 " "

 MXD4 " "

 MXD5 " "

 MXD6 " "

 MXD7 " "

 4. Output V0 I0 V1 I1 CAP T_pd(Low) T_pd(High)REF

 -- -- -- -- --- --------- --------- ---

 (V) (uA) (V) (uA) (pf) (nsec) (nsec)

 LATCHD0 Note 7 Note 6 3.1 Note 6 10 280 140 0#^

 WAIT# Note 7 400 2.4 20 25 490 490 0#

 MA0-MA5 Note 7 400 2.4 20 20 242 240 0# or 0

 INT# Note 7 400 2.4 20 25 490 572 0

 RAS0-RAS3Note 7 400 2.4 20 20 382 382 0#

 WRCTL# Note 7 Note 6 3.1 Note 6 10 382 382 0#

1. Time from High Impedance to 1 or 0 is 200nsec. (from 0_1 of T_1)

2. For IORQ# Ref to 0# t_d (Low)=152nsec t_d (High)=166nsec. 0

3. Horizontal Drive time from low to high is 40nsec after 0#.

 Time from high to low is 100nsec before rising edge of 0.

4. Vertical Drive will transition from low to high 40nsec after falling edge

 of 0. Its width will be 2.1 usec max, 1.54usec min. It will go from

 high to low 100nsec before falling edge of 0.

5. Reference t_pd (High) is 0.

6. MOS to MOS signal.

7. .5V + noise generated by Address Chip (.15V) = .65V

 - 9 -

III. I/O MODE DECODE

 I/O Parts

 HEX OUT INPUT

 --- --- -----

 0 Color 0 Right

 1 Color 1 Right

 2 Color 2 Right

 3 Color 3 Right

 4 Color 0 Left

 5 Color 1 Left

 6 Color 2 Left

 7 Color 3 Left

 8 Consumer/Commercial Intercept Feedback

 9 Horiz Color Bndry

 A Vertical Blank

 B Color Block TX

 C Magic Reg

 D Interrupt Feedback

 E Interrupt Mode Vertical Addr Feedback

 F Interrupt Line Horizontal Addr Feedback

 10 Tone Master OSC SW Bank 0

 11 Tone A SW Bank 1

 12 Tone B SW Bank 2

 13 Tone C SW BANK 3

 14 Tremolo SW BANK 4

 15 Tone C Volume SW BANK 5

 16 Tone A,B Volume SW BANK 6

 17 Noise Volume SW BANK 7

 18 Sound Block TX

 19

 1A

 1B

 1C Pot 0

 1D Pot 1

 1E Pot 2

 1F Pot 3

 20

 21

 22

 23

 24

 .

 .

 2F

End of 'Nutting' Manual - Continues with ROM Source

 This page intentionally left blank for double-sided print purposes

Feb 08 16:23 2002
bally.h
 Page 1

 1:

 ; BALLY.H - Version 2.2

 2:

 ; Bally Astrocade Equates and Macros Header File

 3:

 ;

 4:

 ; Retyped and proofread by Adam Trionfo and Lance F. Squire

 5:

 ; Version 1.0 - January 17, 2002

 6:

 ; Version 2.2 - February 6, 2002

 7:

 ; This ROM file contains the equates and macros that the

 8:

 ; Bally ROM requires for assembly (the header file is

 9:

 ; available separately too). This file has been written to

 10:

 ; assemble with ZMAC 1.3 (a little known, freely distribut-

 11:

 ; able Z-80 assembler (with C source), that has a 25-year

 12:

 ; history. ZMAC can be compiled under just about any O.S.

 13:

 ; in existence, so try it out. This file will probably

 14:

 ; require changes to be assembled under other assemblers.

 15:

 ;

 16:

 ; To assemble your Z-80 source code using ZMAC:

 17:

 ;

 18:

 ; zmac -d -o <outfile> -x <listfile> <filename>

 19:

 ;

 20:

 ; For example, assemble this Astrocade Z-80 ROM file:

 21:

 ;

 22:

 ; zmac -d -o BallyROM.bin -x BallyROM.lst BallyROM.asm

 23:

 ;

 24:

 ; Currently the Listing file is full of 'Undeclared'

 25:

 ; errors. When all of the source is typed-in, these will

 26:

 ; vanish. I'm leaving the others until all the source is

 27:

 ; re-typed.

 28:

 ;

Feb 08 16:23 2002
bally.h
 Page 2

 30:

 ; ***************************

 31:

 ; * HOME VIDEO GAME EQUATES *

 32:

 ; ***************************

 33:

 ;

 34:

 ; ASSEMBLY CONTROL

 35:

 ;

 36:
0001
XPNDON EQU 1 ; ** SET TO 1 WHEN HARDWARE EXP

 37:
0001
NWHDWR EQU 1 ; ** SET TO 1 WHEN NEW HARDWARE

 38:

 ;

 39:

 ; GENERAL GOODIES

 40:
4000
NORMEM EQU 4000H

 41:
2000
FIRSTC EQU 2000H ; FIRST ADDRESS IN CARTRIDGE

 42:
0000
SCREEN EQU 0

 43:
0028
BYTEPL EQU 40 ; BYTES PER LINE

 44:
00A0
BITSPL EQU 160 ; BITS PER LINE

 45:

 ; STUFF IN SYSTEM DOPE VECTOR

 46:
0200
STIMER EQU 200H ; SECONDS AND GAME TIME,MUSIC

 47:
0203
CTIMER EQU 203H ; CUSTOM TIMERS

 48:
0206
FNTSYS EQU 206H ; SYSTEM FONT DESCRIPTOR

 49:
020D
FNTSML EQU 20DH ; SMALL FONT DESCRIPTOR

 50:
0214
ALKEYS EQU 214H ; KEYMASK OF ALL KEYS

 51:
0218
MENUST EQU 218H ; HEAD OF ONBOARD MENU

 52:
021E
MXSCR EQU 21EH ; ADDRESS OF 'MAX SCORE'

 53:
0228
NOPLAY EQU 228H ; ADDRESS OF '# OF PLAYERS'

 54:
0235
NOGAME EQU 235H ; ADDRESS OF '# OF GAMES'

 55:

 ; BITS IN PROCESSOR FLAG BYTE

 56:
0007
PSWSGN EQU 7 ; SIGN BIT

 57:
0006
PSWZRO EQU 6 ; ZERO BIT

 58:
0002
PSWPV EQU 2 ; PARITY OVERFLOW

 59:
0000
PSWCY EQU 0 ; CARRY

 60:

 ; BITS IN GAME STATUS BYTE

 61:
0000
GSBTIM EQU 0

 62:
0001
GSBSCR EQU 1

 63:
0007
GSBEND EQU 7

 64:

 ; STANDARD VECTOR DISPLACEMENTS AND BITS

 65:
0000
VBMR EQU 0 ; MAGIC REGISTER

 66:
0001
VBSTAT EQU 1 ; STATUS

 67:
0002
VBTIMB EQU 2 ; TIME BASE

 68:
0003
VBDXL EQU 3 ; DELTA X LO

 69:
0004
VBDXH EQU 4 ; DELTA X HI

 70:
0005
VBXL EQU 5 ; X COORD LO

 71:
0006
VBXH EQU 6 ; X COORD HI

 72:
0007
VBXCHK EQU 7 ; X CHECK FLAGS

 73:
0008
VBDYL EQU 8 ; DELTA Y LO

 74:
0009
VBDYH EQU 09H ; DELTA Y HI

 75:
000A
VBYL EQU 0AH ; Y COORD LO

 76:
000B
VBYH EQU 0BH ; Y COORD HI

 77:
000C
VBYCHK EQU 0CH ; Y CHECK FLAGS

 78:
000D
VBOAL EQU 0DH ; OLD ADDRESS OF L.O.

 79:
000E
VBOAH EQU 0EH ; OLD ADDRESS OF H.O.

 80:

 ; DISPLACEMENTS FROM START OF COORDINATE AREA

 81:
0000
VBDCL EQU 0 ; LO DELTA

 82:
0001
VBDCH EQU 1 ; HI DELTA

 83:
0002
VBCL EQU 2 ; LO COORD

 84:
0003
VBCH EQU 3 ; HI COORD

 85:
0004
VBCCHK EQU 4 ; CHECK BITS

Feb 08 16:23 2002
bally.h
 Page 3

 86:

 ; BITS IN STATUS BYTE

 87:
0007
VBSACT EQU 7 ; VECTOR ACTIVE STATUS

 88:
0006
VBBLNK EQU 6 ; BLANK STATUS

 89:

 ; BITS IN CHECK BIT MASK

 90:
0000
VBCLMT EQU 0 ; DO LIMIT CHECKING

 91:
0001
VBCREV EQU 1 ; REVERSE DELTA ON LIMIT ATTAIN

 92:
0003
VBCLAT EQU 3 ; COORDINATE IS AT LIMIT

 93:

 ; FONT TABLE DISPLACEMENTS FOR NEW CHARACTER DISPLAY ROU

 94:
0000
FTBASE EQU 0 ; BASE CHARACTER

 95:
0001
FTFSX EQU 1 ; X FRAME SIZE

 96:
0002
FTFSY EQU 2 ; Y FRAME SIZE

 97:
0003
FTBYTE EQU 3 ; X SIZE FOR CHAR IN BYTES

 98:
0004
FTYSIZ EQU 4 ; Y SIZE IN BITS

 99:
0005
FTPTL EQU 5 ; PATTERN TABLE ADDRESS LO

 100:
0006
FTPTH EQU 6 ; PATTERN TABLE ADDRESS HI

 101:

 ; BITS FOR MAGIC REGISTER WRITE OPTION BYTE

 102:
0006
MRFLOP EQU 6 ; WRITE WITH FLOP

 103:
0005
MRXOR EQU 5 ; WRITE WITH EXCLUSIVE OR

 104:
0004
MROR EQU 4 ; WRITE WITH OR

 105:
0003
MRXPND EQU 3 ; WRITE WITH EXPAND

 106:
0002
MRROT EQU 2 ; WRITE WITH ROTATE

 107:
0003
MRSHFT EQU 03H ; MASK OF SHIFT AMOUNT

 108:

 ; BITS OF CONTROL HANDLE INPUT PORT

 109:
0004
CHTRIG EQU 4 ; TRIGGER

 110:
0003
CHRIGH EQU 3 ; JOYSTICK RIGHT

 111:
0002
CHLEFT EQU 2 ; JOYSTICK LEFT

 112:
0001
CHDOWN EQU 1 ; DOWN

 113:
0000
CHUP EQU 0 ; UP

 114:

 ; CONTEXT BLOCK REGISTER DISPLACEMENTS

 115:
0000
CBIYL EQU 0 ; IY

 116:
0001
CBIYH EQU 1

 117:
0002
CBIXL EQU 2 ; IX

 118:
0003
CBIXH EQU 3

 119:
0004
CBE EQU 4 ; DE

 120:
0005
CBD EQU 5

 121:
0006
CBC EQU 6 ; BC

 122:
0007
CBB EQU 7

 123:
0008
CBFLAG EQU 8 ; AF

 124:
0009
CBA EQU 9

 125:
000A
CBL EQU 0AH ; HL

 126:
000B
CBH EQU 0BH

 127:

 ; SENTRY RETURN CODES EQUATES:

 128:
0000
SNUL EQU 0 ; NOTHING HAPPENED

 129:
0001
SCT0 EQU 1 ; COUNTER-TIMER 1 THRU 8

 130:
0002
SCT1 EQU 2

 131:
0003
SCT2 EQU 3

 132:
0004
SCT3 EQU 4

 133:
0005
SCT4 EQU 5

 134:
0006
SCT5 EQU 6

 135:
0007
SCT6 EQU 7

 136:
0008
SCT7 EQU 8

 137:
0009
SF0 EQU 9 ; FLAG BIT 0

 138:
000A
SF1 EQU 0AH

 139:
000B
SF2 EQU 0BH

 140:
000C
SF3 EQU 0CH

 141:
000D
SF4 EQU 0DH

Feb 08 16:23 2002
bally.h
 Page 4

 142:
000E
SF5 EQU 0EH

 143:
000F
SF6 EQU 0FH

 144:
0010
SF7 EQU 10H

 145:
0011
SSEC EQU 11H ; SECONDS TIMER HAS COUNTED DOWN

 146:
0013
SKYD EQU 13H ; KEY IS DOWN

 147:
0012
SKYU EQU 12H ; YES IS UP

 148:
001C
SP0 EQU 1CH ; POT IS 0

 149:
001D
SP1 EQU 1DH ; POT IS 1

 150:
001E
SP2 EQU 1EH ; POT IS 2

 151:
001F
SP3 EQU 1FH ; POT IS 3

 152:
0014
ST0 EQU 14H ; TRIGGER 0

 153:
0015
SJ0 EQU 15H ; JOYSTICK 0

 154:
0016
ST1 EQU 16H ; SIMILARLY FOR 1-3

 155:
0017
SJ1 EQU 17H

 156:
0018
ST2 EQU 18H

 157:
0019
SJ2 EQU 19H

 158:
001A
ST3 EQU 1AH

 159:
001B
SJ3 EQU 1BH

Feb 08 16:23 2002
bally.h
 Page 5

 161:

 ; ********************************

 162:

 ; * HOME VIDEO GAME PORT EQUATES *

 163:

 ; ********************************

 164:

 ; OUTPUT PORTS FOR VIRTUAL COLOR

 165:
0000
COL0R EQU 0 ; COLOR 0 RIGHT

 166:
0001
COL1R EQU 1 ; COLOR 1 RIGHT

 167:
0002
COL2R EQU 2 ; COLOR 2 RIGHT

 168:
0003
COL3R EQU 3 ; COLOR 3 RIGHT

 169:
0004
COL0L EQU 4 ; COLOR 0 LEFT

 170:
0005
COL1L EQU 5 ; COLOR 1 LEFT

 171:
0006
COL2L EQU 6 ; COLOR 2 LEFT

 172:
0007
COL3L EQU 7 ; COLOR 3 LEFT

 173:
000B
COLBX EQU 0BH ; COLOR BLOCK OUTPUT PORT

 174:
0009
HORCB EQU 9 ; HORIZONTAL COLOR BOUNDARY

 175:
000A
VERBL EQU 0AH ; VERTICAL BLANKING LINE

 176:

 ; OUTPUT PORTS FOR MUSIC AND SOUNDS

 177:
0010
TONMO EQU 10H ; TONE MASTER OSCILLATOR

 178:
0011
TONEA EQU 11H ; TONE A OSC.

 179:
0012
TONEB EQU 12H ; TONE B OSC.

 180:
0013
TONEC EQU 13H ; TONE C OSC.

 181:
0014
VIBRA EQU 14H ; VIBRATO

 182:
0016
VOLAB EQU 16H ; TONES A,B VOLUME

 183:
0015
VOLC EQU 15H ; TONE C VOLUME

 184:
0017
VOLN EQU 17H ; NOISE VOLUME

 185:
0018
SNDBX EQU 18H ; SOUND BLOCK OUTPUT PORT

 186:

 ; INTERRUPT AND CONTROL OUTPUT PORTS

 187:
000D
INFBK EQU 0DH ; INTERRUPT FEEDBACK

 188:
000E
INMOD EQU 0EH ; INTERRUPT MODE

 189:
000F
INLIN EQU 0FH ; INTERRUPT LINE

 190:
0008
CONCM EQU 8 ; CONSUMER COMMERCIAL

 191:
000C
MAGIC EQU 0CH ; MAGIC REGISTER

 192:
0019
XPAND EQU 19H ; EXPANDER PIXEL DEFINITION PORT

 193:

 ; INTERRUPT AND INTERCEPT INPUT PORTS

 194:
0008
INTST EQU 8 ; INTERCEPT STATUS

 195:
000E
VERAF EQU 0EH ; VERTICAL ADDRESS FEEDBACK

 196:
000F
HORAF EQU 0FH ; HORIZONTAL ADDRESS FEEDBACK

 197:

 ; HAND CONTROL INPUT PORTS

 198:
0010
SW0 EQU 10H ; PLAYER 0 HAND CONTROL

 199:
0011
SW1 EQU 11H ; PLAYER 1 HAND CONTROL

 200:
0012
SW2 EQU 12H ; PLAYER 2 HAND CONTROL

 201:
0013
SW3 EQU 13H ; PLAYER 3 HAND CONTROL

 202:
001C
POT0 EQU 1CH ; PLAYER 0 POT

 203:
001D
POT1 EQU 1DH ; PLAYER 1 POT

 204:
001E
POT2 EQU 1EH ; PLAYER 2 POT

 205:
001F
POT3 EQU 1FH ; PLAYER 3 POT

 206:

 ; KEYBOARD INPUT PORTS

 207:
0014
KEY0 EQU 14H ; KEYBOARD COLUMN 0

 208:
0015
KEY1 EQU 15H ; KEYBOARD COLUMN 1

 209:
0016
KEY2 EQU 16H ; KEYBOARD COLUMN 2

 210:
0017
KEY3 EQU 17H ; KEYBOARD COLUMN 3

Feb 08 16:23 2002
bally.h
 Page 6

 212:

 ; ***************************************

 213:

 ; * HOME VIDEO GAME SYSTEM CALL INDEXES *

 214:

 ; ***************************************

 215:

 ; USER PROGRAM INTERFACE

 216:
0000
UPISTR EQU 0

 217:
0000
INTPC EQU UPISTR ; INTERPRET WITH CONTEXT CREATE

 218:
0002
XINTC EQU INTPC+2 ; EXIT INTERPRETER WITH CONTEXT

 219:
0004
RCALL EQU XINTC+2 ; CALL ASM LANGUAGE SUBROUTINE

 220:
0006
MCALL EQU RCALL+2 ; CALL INTERPRETER SUBROUTINE

 221:
0008
MRET EQU MCALL+2 ; RETURN FROM INTERPRETER SUBRO

 222:
000A
MJUMP EQU MRET+2 ; MACRO JUMP

 223:
000C
SUCK EQU MJUMP+2 ; SUCK INLINE ARGS INTO CB

 224:

 ; SCHEDULER ROUTINES

 225:
000C
SCHEDR EQU SUCK

 226:
000E
ACTINT EQU SCHEDR+2 ; SET SUB TIMER

 227:
0010
DECCTS EQU ACTINT+2 ; DEC CT'S UNDER MASK

 228:

 ; MUSIC AND SOUNDS

 229:
0012
MUZAK EQU DECCTS+2

 230:
0012
BMUSIC EQU MUZAK ; BEGIN PLAYING MUSIC

 231:
0014
EMUSIC EQU BMUSIC+2 ; STOP PLAYING MUSIC

 232:

 ; SCREEN HANDLER ROUTINES

 233:
0016
SCRSTR EQU EMUSIC+2

 234:
0016
SETOUT EQU SCRSTR ; SET SCREEN SIZE

 235:
0018
COLSET EQU SETOUT+2 ; SET COLORS

 236:
001A
FILL EQU COLSET+2 ; FILL MEMORY WITH DAT

 237:
001C
RECTAN EQU FILL+2 ; PAINT RECTANGLE

 238:
001E
VWRITR EQU RECTAN+2 ; WRITE RELATIVE FROM VECTOR

 239:
0020
WRITR EQU VWRITR+2 ; WRITE RELATIVE

 240:
0022
WRITP EQU WRITR+2 ; WRITE WITH PATTERN SIZE LOOKUP

 241:
0024
WRIT EQU WRITP+2 ; WRITE WITH SIZES PROVIDED

 242:
0026
WRITA EQU WRIT+2 ; WRITE ABSOLUTE

 243:
0028
VBLANK EQU WRITA+2 ; BLANK AREA FROM VECTOR

 244:
002A
BLANK EQU VBLANK+2 ; BLANK AREA

 245:
002C
SAVE EQU BLANK+2 ; SAVE AREA

 246:
002E
RESTOR EQU SAVE+2 ; RESTORE AREA

 247:
0030
SCROLL EQU RESTOR+2 ; SCROLL AREA OF SCREEN

 248:

 ;

 249:
0032
CHRDIS EQU SCROLL+2 ; NEW DISPLAY CHARACTER

 250:
0034
STRDIS EQU CHRDIS+2 ; NEW DISPLAY STRING

 251:
0036
DISNUM EQU STRDIS+2 ; DISPLAY NUMBER

 252:

 ;

 253:
0038
RELABS EQU DISNUM+2 ; RELATIVE TO ABSOLUTE CONVERSI

 254:
003A
RELAB1 EQU RELABS+2 ; NONMAGIC RELABS

 255:
003C
VECTC EQU RELAB1+2 ; VECTOR SINGLE COORDINATE

 256:
003E
VECT EQU VECTC+2 ; VECTOR COORDINATE PAIR

 257:

 ; HUMAN INTERFACE ROUTINES

 258:
0040
HUMANR EQU VECT +2

 259:
0040
KCTASC EQU HUMANR ; KEY CODE TO ASCII

 260:
0042
SENTRY EQU KCTASC+2 ; SENSE TRANSITION

 261:
0044
DOIT EQU SENTRY+2 ; BRANCH TO TRANSITION HANDLER

 262:
0046
DOITB EQU DOIT+2 ; USE B INSTEAD OF A

 263:
0048
PIZBRK EQU DOITB+2 ; TAKE A BREAK

 264:
004A
MENU EQU PIZBRK+2 ; DISPLAY A MENU

 265:
004C
GETPAR EQU MENU+2 ; GET GAME PARAMENTER FROM USER

 266:
004E
GETNUM EQU GETPAR+2 ; GET NUMBER FROM USER

 267:
0050
PAWS EQU GETNUM+2 ; PAUSE

Feb 08 16:23 2002
bally.h
 Page 7

 268:
0052
DISTIM EQU PAWS+2 ; DISPLAY TIME

 269:
0054
INCSCR EQU DISTIM+2 ; INC SCORE

 270:

 ; MATH ROUTINES

 271:
0056
MATH EQU INCSCR+2

 272:
0056
INDEXN EQU MATH ; INDEX NIBBLE

 273:
0058
STOREN EQU INDEXN+2 ;

 274:
005A
INDEXW EQU STOREN+2 ; INDEX WORD

 275:
005C
INDEXB EQU INDEXW+2 ; INDEX BYTE

 276:
005E
MOVE EQU INDEXB+2 ; BLOCK TRANSFER

 277:
0060
SHIFTU EQU MOVE+2 ; SHIFT UP A DIGIT

 278:
0062
BCDADD EQU SHIFTU+2 ; BCD ADD

 279:
0064
BCDSUB EQU BCDADD+2 ; BCD SUBTRACT

 280:
0066
BCDMUL EQU BCDSUB+2 ; BCD MULTIPLY

 281:
0068
BCDDIV EQU BCDMUL+2 ; BCD DIVIDE

 282:
006A
BCDCHS EQU BCDDIV+2 ; BCD CHANGE SIGN

 283:
006C
BCDNEG EQU BCDCHS+2 ; BCD NEGATE

 284:
006E
DADD EQU BCDNEG+2 ; DECIMAL ADD

 285:
0070
DSMG EQU DADD+2 ; CONVERT TO SIGN MAGNITUDE

 286:
0072
DABS EQU DSMG+2 ; DECIMAL ABSOLUTE VALUE

 287:
0074
NEGT EQU DABS+2 ; NEGATE

 288:
0076
RANGED EQU NEGT+2 ; RANGED RANDOM NUMBER

 289:
0078
QUIT EQU RANGED+2 ; QUIT CASSETTE EXECUTION

 290:
007A
SETB EQU QUIT+2 ; SET BYTE

 291:
007C
SETW EQU SETB+2 ; SET WORD

 292:
007E
MSKTD EQU SETW+2 ; MASK TO DELTAS

Feb 08 16:23 2002
bally.h
 Page 8

 294:

 ; **********

 295:

 ; * MACROS *

 296:

 ; **********

 297:

 ; MACROS TO DEFINE PATTERNS

 298:

DEF2 MACRO AA, AB

 299:

 DEFB AA

 300:

 DEFB AB

 301:

 ENDM

 302:

DEF3 MACRO BA, BB, BCC

 303:

 DEFB BA

 304:

 DEFB BB

 305:

 DEFB BCC ; 'BC' reserved, so used 'BCC'

 306:

 ENDM

 307:

DEF4 MACRO CA, CB, CC, CD

 308:

 DEFB CA

 309:

 DEFB CB

 310:

 DEFB CC

 311:

 DEFB CD

 312:

 ENDM

 313:

DEF5 MACRO DA, DBB, DC, DD, DEE

 314:

 DEFB DA

 315:

 DEFB DBB ; 'DB' reserved, so used 'DBB'

 316:

 DEFB DC

 317:

 DEFB DD

 318:

 DEFB DEE ; 'DE' reserved, so used 'DEE'

 319:

 ENDM

 320:

DEF6 MACRO EA, EB, EC, ED, EE, EF

 321:

 DEFB EA

 322:

 DEFB EB

 323:

 DEFB EC

 324:

 DEFB ED

 325:

 DEFB EE

 326:

 DEFB EF

 327:

 ENDM

 328:

DEF8 MACRO GA, GB, GC, GD, GEE, GF, GG, GH

 329:

 DEFB GA

 330:

 DEFB GB

 331:

 DEFB GC

 332:

 DEFB GD

 333:

 DEFB GEE ; 'GE' reserved, so used 'GEE'

 334:

 DEFB GF

 335:

 DEFB GG

 336:

 DEFB GH

 337:

 ENDM

 338:

 ; MACROS TO COMPUTE CONSTANT SCREEN ADDRESSES

 339:

XYRELL MACRO p1, p2, p3 ; RELATIVE LOAD

 340:

 LD p1,. RES. (p3). SHL. 8+(p2)

 341:

 ENDM

 342:

 ; MACRO TO GENERATE SYSTEM CALL

 343:

SYSTEM MACRO NUMBA

 344:

 RST 56

 345:

 DEFB NUMBA

 346:

 IF NUMBA = INTPC

 347:

INTPCC DEFL 1

 348:

 ENDIF

 349:

 ENDM

Feb 08 16:23 2002
bally.h
 Page 9

 350:

 ; MACRO TO GENERATE SYSTEM CALL WITH SUCK OPTION ON

 351:

SYSSUK MACRO UMBA

 352:

 RST 56

 353:

 DEFB UMBA+1

 354:

 IF UMBA = INTPC

 355:

INTPCC DEFL 1

 356:

 ENDIF

 357:

 ENDM

 358:

 ; MACROS TO GENERATE MACRO INSTRUCTION CALLS

 359:

 ; FILL SCREEN WITH CONSTANT DATA (was 'FILL?')

 360:

FILLq MACRO START, NBYTES, DATA

 361:

 DEFB FILL+1

 362:

 DEFW START

 363:

 DEFW NBYTES

 364:

 DEFB DATA

 365:

 ENDM

 366:

 ; EXIT INTERPRETER WITH CONTEXT RESTORE

 367:

EXIT MACRO

 368:

 DEFB XINTC

 369:

INTPCC DEFL 0

 370:

 ENDM

 371:

 ; INTERPRET WITH INLINE SUCK

 372:

DO MACRO CID

 373:

 DEFB CID+1

 374:

 ENDM

 375:

 ; INTERPRET WITHOUT INLINE SUCK

 376:

DONT MACRO CID

 377:

 DEFB CID

 378:

 ENDM

 379:

 ; MACRO CALL FROM DOIT TABLE

 380:
00C0
ENDx EQU 0C0H

 381:

MC MACRO AA, BB, EE

 382:

 DEFB AA+80H

 383:

 DEFW BB

 384:

 IF EE

 385:

 DEFB EE

 386:

 ENDIF

 387:

 ENDM

 388:

 ; REAL CALL FROM DOIT TABLE

 389:

RC MACRO AA, BB, EE

 390:

 DEFB AA+40H

 391:

 DEFW BB

 392:

 IF EE

 393:

 DEFB EE

 394:

 ENDIF

 395:

 ENDM

 396:

 ; REAL JUMP FROM DOIT TABLE

 397:

JMPd MACRO AA, BB, EE

 398:

 DEFB AA

 399:

 DEFW BB

 400:

 IF EE

 401:

 DEFB EE

 402:

 ENDIF

 403:

 ENDM

 404:

 ; DISPLAY A STRING

 405:

TEXTD MACRO AA, BB, CC, DD

Feb 08 16:23 2002
bally.h
 Page 10

 406:

 DEFB STRDIS+1

 407:

 DEFB BB

 408:

 DEFB CC

 409:

 DEFB DD

 410:

 DEFW AA

 411:

 ENDM

 413:

 ;**************

 414:

 ; MUSIC MACROS

 415:

 ; NOTE DURATION, FREQ(S)

 416:

NOTE1 MACRO DUR, N1

 417:

 DEFB (DUR)&(7FH)

 418:

 DEFB N1

 419:

 ENDM

 420:

NOTE2 MACRO DUR, N1, N2

 421:

 DEFB (DUR)&(7FH)

 422:

 DEFB N1

 423:

 DEFB N2

 424:

 ENDM

 425:

NOTE3 MACRO DUR, N1, N2, N3

 426:

 DEFB DUR

 427:

 DEFB N1

 428:

 DEFB N2

 429:

 DEFB N3

 430:

 ENDM

 431:

NOTE4 MACRO DUR, N1, N2, N3, N4

 432:

 DEFB DUR

 433:

 DEFB N1

 434:

 DEFB N2

 435:

 DEFB N3

 436:

 DEFB N4

 437:

 ENDM

 438:

NOTE5 MACRO DUR, N1, N2, N3, N4, N5

 439:

 DEFB DUR

 440:

 DEFB N1

 441:

 DEFB N2

 442:

 DEFB N3

 443:

 DEFB N4

 444:

 DEFB N5

 445:

 ENDM

 446:

MASTER MACRO OFFSET

 447:

 DEFB 80H

 448:

 DEFB OFFSET

 449:

 ENDM

 450:

 ; STUFF OUTPUT PORT#, DATA OR

 451:

 ; OUTPUT SNDBX, DATA10, D11,..., DATA17

 452:

OUTPUT MACRO PORT, D0, D1, D2, D3, D4, D5, D6, D7

 453:

 IF .NOT. (PORT=18H)

 454:

 DEFB 80H+((PORT)&(7FH))

 455:

 DEFB D0

 456:

 ENDIF

 457:

 IF PORT=18H

 458:

 DEFB 88H

Feb 08 16:23 2002
bally.h
 Page 11

 459:

 DEF8 D7, D6 ,D5, D4, D3, D2, D1, D0

 460:

 ENDIF

 461:

 ENDM

 462:

 ; SET VOICE BYTE

 463:

 ; THE FORMAT OF THE VOICE BYTE IS

 464:

 ; *I*A*I*B*I*C*V*N

 465:

 ; WHERE N = LOAD NOISE WITH DATA AT PC AND INC PC

 466:

 ; V = LOAD VIBRATO AND INC PC

 467:

 ; I = INC PC

 468:

 ; A,B,C = LOAD TONE A,B,C WITH DATA AT PC

 469:

VOICEM MACRO MASK ; 'VOICES' TO 'VOICEM'

 470:

 DEFB 90H

 471:

 DEFB MASK

 472:

 ENDM

 473:

; PUSH NUMBER ONTO STACK

 474:

PUSHN MACRO NUMB

 475:

 DEFB 0A0H+((NUMB-1). AND. 0FH)

 476:

 ENDM

 477:

 ; SET VOLUMES

 478:

VOLUME MACRO P1, P2

 479:

 DEFB 0B0H

 480:

 DEFB P1

 481:

 DEFB P2

 482:

 ENDM

 483:

; CALL RELATIVE 0-15 BEYOND SELF+1

 484:

CREL MACRO BY

 485:

 DEFB 0D0H+(BY.AND.0FH)

 486:

 ENDM

 487:

; DEC STACK TOP AND JNZ

 488:

DSJNZ MACRO ADD_IT

 489:

 DEFB 0C0H

 490:

 DEFW ADD_IT

 491:

 ENDM

 492:

; FLIP LEGATO STACATO

 493:

LEGSTA MACRO

 494:

 DEFB 0E0H

 495:

 ENDM

 496:

REST MACRO TIME

 497:

 DEFB 0E1H

 498:

 DEFB TIME

 499:

 ENDM

 500:

QUIET MACRO

 501:

 DEFB 0F0H

 502:

 ENDM

 503:

 ; *****************

 504:

 ; * MUSIC EQUATES *

 505:

 ; *****************

 506:

 ; NOTE VALUES

 507:
00FD
G0 EQU 253

 508:
00EE
GS0 EQU 238

 509:
00E1
A0 EQU 225

 510:
00D4
AS0 EQU 212

 511:
00C8
B0 EQU 200

 512:
00BD
C1 EQU 189

 513:
00B2
CS1 EQU 178

 514:
00A8
D1 EQU 168

Feb 08 16:23 2002
bally.h
 Page 12

 515:
009F
DS1 EQU 159

 516:
0096
E1 EQU 150

 517:
008D
F1 EQU 141

 518:
0085
FS1 EQU 133

 519:
007E
G1 EQU 126

 520:
0077
GS1 EQU 119

 521:
0070
A1 EQU 112

 522:
006A
AS1 EQU 106

 523:
0064
B1 EQU 100

 524:
005E
C2 EQU 94

 525:
0059
CS2 EQU 89

 526:
0054
D2 EQU 84

 527:
004F
DS2 EQU 79

 528:
004A
E2 EQU 74

 529:
0046
F2 EQU 70

 530:
0042
FS2 EQU 66

 531:
003E
G2 EQU 62

 532:
003B
GS2 EQU 59

 533:
0037
A2 EQU 55

 534:
0034
AS2 EQU 52

 535:
0031
B2 EQU 49

 536:
002E
C3 EQU 46

 537:
002C
CS3 EQU 44

 538:
0029
D3 EQU 41

 539:
0027
DS3 EQU 39

 540:
0025
E3 EQU 37

 541:
0022
F3 EQU 34

 542:
0020
FS3 EQU 32

 543:
001F
G3 EQU 31

 544:
001D
GS3 EQU 29

 545:
001B
A3 EQU 27

 546:
001A
AS3 EQU 26

 547:
0018
B3 EQU 24

 548:
0017
C4 EQU 23

 549:
0015
CS4 EQU 21

 550:
0014
D4 EQU 20

 551:
0013
DS4 EQU 19

 552:
0012
E4 EQU 18

 553:
0011
F4 EQU 17

 554:
0010
FS4 EQU 16

 555:
000F
G4 EQU 15

 556:
000E
GS4 EQU 14

 557:
000D
A4 EQU 13

 558:
000B
C5 EQU 11

 559:
000A
CS5 EQU 10

 560:
0009
DS5 EQU 9

 561:
0008
F5 EQU 8

 562:
0007
G5 EQU 7

 563:
0006
A5 EQU 6

 564:
0005
C6 EQU 5

 565:
0004
DS6 EQU 4

 566:
0003
G6 EQU 3

 567:
0002
C7 EQU 2

 568:
0001
G7 EQU 1

 569:
0000
G8 EQU 0

 570:

 ; MASTER OSCILATOR OFFSETS

Feb 08 16:23 2002
bally.h
 Page 13

 571:
00FE
OB0 EQU 254

 572:
00F1
OC0 EQU 241

 573:
00D6
OD1 EQU 214

 574:
00BF
OE1 EQU 191

 575:
00B4
OF1 EQU 180

 576:
00A0
OG1 EQU 160

 577:
008F
OA1 EQU 143

 578:
0047
OA2 EQU 71

 579:
0023
OA3 EQU 35

 580:
0011
OA4 EQU 17

 581:
0008
OA5 EQU 8

Feb 08 16:23 2002
bally.h
 Page 14

 583:

 ; ***************************

 584:

 ; * SYSTEM RAM MEMORY CELLS *

 585:

 ; ***************************

 586:
0FFF
WASTE EQU 0FFFH

 587:
0FFF
WASTER EQU WASTE

 588:

 ;

 589:

 ; THE FOLLOWING ORG SHOULD BE SET TO THE VALUE OF

 590:

 ; THE TAG 'SYSRAM', THIS WILL CAUSE SYSTEM RAM

 591:

 ; TO RESIDE AT THE HIGEST POSSIBLE ADDRESS

 592:

 ;

 593:

; ORG 4FC8H

 594:

; DEFS 6 ; GOT SOME LEFT STILL

 595:
4FCE
BEGRAM EQU 4FCEH

 596:

 ; USED BY MUSIC PROCESSOR

 597:
4FCE
MUZPC EQU 4FCEH ; MUSIC PROGRAM COUNTER

 598:
4FD0
MUZSP EQU 4FD0H ; MUSIC STACK POINTER

 599:
4FD2
PVOLAB EQU 4FD2H ; PRESET VOLUME FOR TONES A AND B

 600:
4FD3
PVOLMC EQU 4FD3H ; PRESET VOLUME FOR MASTER OSC

 601:
4FD4
VOICES EQU 4FD4H ; MUSIC VOICES

 602:

 ; COUNTER TIMERS (USED BY DECCTS,ACTINT,CTIMER)

 603:
4FD5
CT0 EQU 4FD5H ; COUNTER TIMER 0

 604:
4FD6
CT1 EQU 4FD6H ; 1

 605:
4FD7
CT2 EQU 4FD7H ; 2

 606:
4FD8
CT3 EQU 4FD8H ; 3

 607:
4FD9
CT4 EQU 4FD9H ; 4

 608:
4FDA
CT5 EQU 4FDAH ; 5

 609:
4FDB
CT6 EQU 4FDBH ; 6

 610:
4FDC
CT7 EQU 4FDCH ; 7

 611:

 ;USED BY SENTRY TO TRACK CONTROLS

 612:
4FDD
CNT EQU 4FDDH ; COUNTER UPDATE&NUMBER TRACKING

 613:
4FDE
SEMI4S EQU 4FDEH ; FLAG BITS

 614:
4FDF
OPOT0 EQU 4FDFH ; POT 0 TRACKING

 615:
4FE0
OPOT1 EQU 4FE0H ; POT 1 TRACKING

 616:
4FE1
OPOT2 EQU 4FE1H ; POT 2 TRACKING

 617:
4FE2
OPOT3 EQU 4FE2H ; POT 3 TRACKING

 618:
4FE3
KEYSEX EQU 4FE3H ; KEYBOARD TRACKING BYTE

 619:
4FE4
OSW0 EQU 4FE4H ; SWITCH 0 TRACKING

 620:
4FE5
OSW1 EQU 4FE5H ; SWITCH 1 TRACKING

 621:
4FE6
OSW2 EQU 4FE6H ; SWITCH 2 TRACKING

 622:
4FE7
OSW3 EQU 4FE7H ; SWITCH 3 TRACKING

 623:
4FE8
COLLST EQU 4FE8H ; COLOR LIST ADDRESS FOR P.B.A

 624:

 ; USED BY STIMER

 625:
4FEA
DURAT EQU 4FEAH ; NOTE DURATION

 626:
4FEB
TMR60 EQU 4FEBH ; SIXTIETHS OF SEC

 627:
4FEC
TIMOUT EQU 4FECH ; BLAKOUT TIMER

 628:
4FED
GTSECS EQU 4FEDH ; GAME TIME SECONDS

 629:
4FEE
GTMINS EQU 4FEEH ; GAME TIME MINUTES

 630:

 ; USED BY MENU

 631:
4FEF
RANSHT EQU 4FEFH ; RANDOM NUMBER SHIFT REGISTER

 632:
4FF3
NUMPLY EQU 4FF3H ; NUMBER OF PLAYERS

 633:
4FF4
ENDSCR EQU 4FF4H ; SCORE TO 'PLAY TO'

 634:
4FF7
MRLOCK EQU 4FF7H ; MAGIC REGISTER LOCK OUT FLAG

 635:
4FF8
GAMSTB EQU 4FF8H ; GAME STATUS BYTE

 636:
4FF9
PRIOR EQU 4FF9H ; MUSIC PROTECT FLAG

 637:
4FFA
SENFLG EQU 4FFAH ; SENTRY CONTROL SEIZURE FLAG

 638:
4FFB
UMARGT EQU 4FFBH

Feb 08 16:23 2002
bally.h
 Page 15

 639:
4FFD
USERTB EQU 4FFDH

 640:
9FCD
SYSRAM EQU (5000H-($-BEGRAM+1))

**** bally.h ****

Statistics:

 426
symbols

 0
bytes

 0
macro calls

 2744
macro bytes

 0
invented symbols

Feb 08 16:23 2002
** Symbol Table **
 Page 16

Symbol Table:

a0 = e1+ fntsml = 20d+ ranged = 76

a1 = 70+ fntsys = 206+ ransht =4fef+

a2 = 37+ fs1 = 85+ rc 521+

a3 = 1b+ fs2 = 42+ rcall = 4

a4 = d+ fs3 = 20+ rectan = 1c

a5 = 6+ fs4 = 10+ relab1 = 3a

actint = e ftbase = 0+ relabs = 38

alkeys = 214+ ftbyte = 3+ rest a60+

as0 = d4+ ftfsx = 1+ restor = 2e

as1 = 6a+ ftfsy = 2+ save = 2c

as2 = 34+ ftpth = 6+ schedr = c

as3 = 1a+ ftptl = 5+ screen = 0+

b0 = c8+ ftysiz = 4+ scroll = 30

b1 = 64+ g0 = fd+ scrstr = 16

b2 = 31+ g1 = 7e+ sct0 = 1+

b3 = 18+ g2 = 3e+ sct1 = 2+

bcdadd = 62 g3 = 1f+ sct2 = 3+

bcdchs = 6a g4 = f+ sct3 = 4+

bcddiv = 68 g5 = 7+ sct4 = 5+

bcdmul = 66 g6 = 3+ sct5 = 6+

bcdneg = 6c g7 = 1+ sct6 = 7+

bcdsub = 64 g8 = 0+ sct7 = 8+

begram =4fce gamstb =4ff8+ semi4s =4fde+

bitspl = a0+ getnum = 4e senflg =4ffa+

blank = 2a getpar = 4c sentry = 42

bmusic = 12 gs0 = ee+ setb = 7a

bytepl = 28+ gs1 = 77+ setout = 16

c1 = bd+ gs2 = 3b+ setw = 7c

c2 = 5e+ gs3 = 1d+ sf0 = 9+

c3 = 2e+ gs4 = e+ sf1 = a+

c4 = 17+ gsbend = 7+ sf2 = b+

c5 = b+ gsbscr = 1+ sf3 = c+

c6 = 5+ gsbtim = 0+ sf4 = d+

c7 = 2+ gtmins =4fee+ sf5 = e+

cba = 9+ gtsecs =4fed+ sf6 = f+

cbb = 7+ horaf = f+ sf7 = 10+

cbc = 6+ horcb = 9+ shiftu = 60

cbd = 5+ humanr = 40 sj0 = 15+

cbe = 4+ incscr = 54 sj1 = 17+

cbflag = 8+ indexb = 5c sj2 = 19+

cbh = b+ indexn = 56 sj3 = 1b+

cbixh = 3+ indexw = 5a skyd = 13+

cbixl = 2+ infbk = d+ skyu = 12+

cbiyh = 1+ inlin = f+ sndbx = 18+

cbiyl = 0+ inmod = e+ snul = 0+

cbl = a+ intpc = 0 sp0 = 1c+

chdown = 1+ intst = 8+ sp1 = 1d+

chleft = 2+ jmpd 58a+ sp2 = 1e+

chrdis = 32 kctasc = 40 sp3 = 1f+

chrigh = 3+ key0 = 14+ ssec = 11+

chtrig = 4+ key1 = 15+ st0 = 14+

chup = 0+ key2 = 16+ st1 = 16+

Feb 08 16:23 2002
** Symbol Table **
 Page 17

cnt =4fdd+ key3 = 17+ st2 = 18+

col0l = 4+ keysex =4fe3+ st3 = 1a+

col0r = 0+ legsta a3d+ stimer = 200+

col1l = 5+ magic = c+ storen = 58

col1r = 1+ master 821+ strdis = 34

col2l = 6+ math = 56 suck = c

col2r = 2+ mc 4b8+ sw0 = 10+

col3l = 7+ mcall = 6 sw1 = 11+

col3r = 3+ menu = 4a sw2 = 12+

colbx = b+ menust = 218+ sw3 = 13+

collst =4fe8+ mjump = a sysram =9fcd+

colset = 18 move = 5e syssuk 376+

concm = 8+ mret = 8 system 309+

crel 9d8+ mrflop = 6+ textd 5ef+

cs1 = b2+ mrlock =4ff7+ timout =4fec+

cs2 = 59+ mror = 4+ tmr60 =4feb+

cs3 = 2c+ mrrot = 2+ tonea = 11+

cs4 = 15+ mrshft = 3+ toneb = 12+

cs5 = a+ mrxor = 5+ tonec = 13+

ct0 =4fd5+ mrxpnd = 3+ tonmo = 10+

ct1 =4fd6+ msktd = 7e+ umargt =4ffb+

ct2 =4fd7+ muzak = 12 upistr = 0

ct3 =4fd8+ muzpc =4fce+ usertb =4ffd+

ct4 =4fd9+ muzsp =4fd0+ vbblnk = 6+

ct5 =4fda+ mxscr = 21e+ vbcchk = 4+

ct6 =4fdb+ negt = 74 vbch = 3+

ct7 =4fdc+ nogame = 235+ vbcl = 2+

ctimer = 203+ noplay = 228+ vbclat = 3+

d1 = a8+ normem =4000+ vbclmt = 0+

d2 = 54+ note1 65e+ vbcrev = 1+

d3 = 29+ note2 699+ vbdch = 1+

d4 = 14+ note3 6e6+ vbdcl = 0+

dabs = 72 note4 73d+ vbdxh = 4+

dadd = 6e note5 7a6+ vbdxl = 3+

deccts = 10 numply =4ff3+ vbdyh = 9+

def2 0+ nwhdwr = 1+ vbdyl = 8+

def3 33+ oa1 = 8f+ vblank = 28

def4 97+ oa2 = 47+ vbmr = 0+

def5 ee+ oa3 = 23+ vboah = e+

def6 195+ oa4 = 11+ vboal = d+

def8 210+ oa5 = 8+ vbsact = 7+

disnum = 36 ob0 = fe+ vbstat = 1+

distim = 52 oc0 = f1+ vbtimb = 2+

do 474+ od1 = d6+ vbxchk = 7+

doit = 44 oe1 = bf+ vbxh = 6+

doitb = 46 of1 = b4+ vbxl = 5+

dont 497+ og1 = a0+ vbychk = c+

ds1 = 9f+ opot0 =4fdf+ vbyh = b+

ds2 = 4f+ opot1 =4fe0+ vbyl = a+

ds3 = 27+ opot2 =4fe1+ vect = 3e

ds4 = 13+ opot3 =4fe2+ vectc = 3c

ds5 = 9+ osw0 =4fe4+ veraf = e+

ds6 = 4+ osw1 =4fe5+ verbl = a+

dsjnz a08+ osw2 =4fe6+ vibra = 14+

dsmg = 70 osw3 =4fe7+ voicem 927+

durat =4fea+ output 855+ voices =4fd4+

Feb 08 16:23 2002
** Symbol Table **
 Page 18

e1 = 96+ paws = 50 volab = 16+

e2 = 4a+ pizbrk = 48 volc = 15+

e3 = 25+ pot0 = 1c+ voln = 17+

e4 = 12+ pot1 = 1d+ volume 991+

emusic = 14 pot2 = 1e+ vwritr = 1e

endscr =4ff4+ pot3 = 1f+ waste = fff

endx = c0+ prior =4ff9+ waster = fff+

exit 43f+ pswcy = 0+ writ = 24

f1 = 8d+ pswpv = 2+ writa = 26

f2 = 46+ pswsgn = 7+ writp = 22

f3 = 22+ pswzro = 6+ writr = 20

f4 = 11+ pushn 95b+ xintc = 2

f5 = 8+ pvolab =4fd2+ xpand = 19+

fill = 1a pvolmc =4fd3+ xpndon = 1+

fillq 3e4+ quiet a95+ xyrell 2cf+

firstc =2000+ quit = 78

Nutting Manual ++ Release Notes:

Version 1.0 (June 18, 2003):

 - First "++" version

 - Added information to DISNUM (page 34)
